删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于特征匹配的非刚性大位移光流算法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于特征匹配的非刚性大位移光流算法
Non-Rigid and Large Displacement Optical Flow Based on Descriptor Matching
投稿时间:2019-01-15
DOI:10.15918/j.tbit1001-0645.2019.023
中文关键词:特征匹配光流大位移MPI Sintel
English Keywords:descriptor matchingoptical flowlarge displacementMPI Sintel
基金项目:国家部委预研基金资助项目(51327030104)
作者单位E-mail
王广龙陆军工程大学 石家庄校区 纳米技术与微系统实验室, 河北, 石家庄 050003
田杰陆军工程大学 石家庄校区 纳米技术与微系统实验室, 河北, 石家庄 050003985459288@qq.com
朱文杰陆军工程大学 石家庄校区 纳米技术与微系统实验室, 河北, 石家庄 050003
方丹陆军工程大学 石家庄校区 纳米技术与微系统实验室, 河北, 石家庄 050003
摘要点击次数:805
全文下载次数:315
中文摘要:
针对非刚性大位移光流估计问题,提出了一种基于特征匹配的光流优化算法. 首先,传统数据项针对整副图像进行一致性假设的策略过于粗放,文中采用了一种根据图像中每个像素特点自适应选择一致性假设的优化方法;其次,针对传统各向同性的平滑项易造成演化过程中图像细节丢失、边缘模糊等问题,提出一种各向异性的平滑项,有利于实现图像细节的光流估计;另外融合特征匹配于变分光流框架中,充分利用特征匹配在大位移条件下的鲁棒性与变分光流的致密性;最后,基于MPI Sintel数据集对本文算法进行定量分析. 实验结果表明,本文算法能够实现非刚性大位移光流的准确估计,鲁棒性强,在market_5图像中,该算法比LDOF于AAE和AEPE指标上分别提升了18.9%与21.9%.
English Summary:
In order to solve the arithmetic problem of non-rigid and large displacement optical flow, an improved arithmetic was proposed based on descriptor matching for optical flow. In the method, a novel data term was put forward firstly to adaptively select invariable hypothesizes for each pixel. And then, the traditional isotropic smoothness term was optimized to be the anisotropic one for the optical flow estimation of image details. Furthermore, the descriptor matching was applied to optical flow fields, taking advantage of the robust ability of descriptor matching to produce some large displacement correspondences and the ability of dense optical flow. At last, a quantitative analysis of the approach was performed on MPI Sintel.The results show that the proposed method can realize accurate estimation of non-rigid and large displacement optical flow. And the method is superior to LDOF with a relative gain of 18.9% for AAE and 21.9% for AEPE in market_5.
查看全文查看/发表评论下载PDF阅读器
相关话题/河北 陆军工程大学 实验室 系统 图像