二维码(扫一下试试看!) | 基于电流的主轴性能退化评估方法 | Evaluation Method of Spindle Performance Degradation Based on Current | 投稿时间:2017-11-03 | DOI:10.15918/j.tbit1001-0645.2019.01.004 | 中文关键词:主轴性能退化主成分分析法(PCA)粒子群算法支持向量机(SVM) | English Keywords:spindleperformance degradationprincipal component analysis(PCA)particle swarm optimization(PSO)support vector machines(SVM) | 基金项目:国家自然科学基金资助项目(51575055);国家部委重大专项资助项目(2015ZX04001002) | | 摘要点击次数:709 | 全文下载次数:390 | 中文摘要: | 为提高精密机床主轴检测的准确性,提出了一种基于电流的主轴性能退化评估方法.建立了主轴性能退化模型,使主轴状态便于监测和评估.首先采用小波包阈值对电流信号进行去噪处理,对去噪后的电流信号提取时频域特征量,构造多域特征空间.然后利用主成分分析法(PCA)进行数据降维,用降维后的样本进行支持向量机回归建模.采用粒子群算法(PSO)对支持向量机模型进行参数优化,以获得最优性能退化模型.将该模型应用于主轴实验台主轴性能退化评估,实验结果表明该方法原理正确,可以准确评价主轴性能. | English Summary: | In order to improve the accuracy of spindle detection for precision machine tools, a method was proposed based on current for evaluating the performance degradation of spindle. A performance degradation model of the spindle was established to facilitate the monitoring and evaluation of the spindle condition. Firstly, the wavelet packet threshold was used to denoise the current signal, and then the multi domain feature space was constructed by extracting the time-frequency features of the denoised current signal. Then the principal component analysis (PCA) was used for data dimensionality reduction, and the dimensionality reduction of samples was used for support vector machine regression modeling. the particle swarm optimization (PSO) algorithm was used to optimize the parameters of the support vector machines (SVM) model to obtain the optimal performance degradation model. Finally, the model was applied to the evaluation of spindle performance degradation in a experiment platform. The experimental results show that the method is correct and can accurately evaluate spindle performance. | 查看全文查看/发表评论下载PDF阅读器 | |
李玉娟,孙欣欣,李盼盼,欧婉露,屈锋.毛细管区带电泳技术研究龙血竭有效单体与核酸适配体及凝血酶之间的相互作用[J].北京理工大学学报(自然科学版),2019,39(1):106~110.LIYu-juan,SUNXin-xin,LIPan-pan,OUWan-lu,QUFeng.Interactio ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王剑,王新民,谢蓉,李婷,曹宇燕.基于IMM-UKF方法的机电作动器突发性故障诊断研究[J].北京理工大学学报(自然科学版),2019,39(2):198~202,208.WANGJian,WANGXin-ming,XIERong,LITing,CAOYu-yan.AbruptFaultDiagno ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21葛红娟,杨光,姜帆,张璐.无平衡电抗器24脉自耦变压整流技术研究[J].北京理工大学学报(自然科学版),2019,39(2):209~214,220.GEHong-juan,YANGGuang,JIANGFan,ZHANGLu.ResearchonTechnologyofNon-BalancedRe ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王军,熊庆辉,金毅,张幽彤.电控喷油器压电堆执行器位移波动及其控制技术[J].北京理工大学学报(自然科学版),2019,39(3):248~254.WANGJun,XIONGQing-hui,JINYi,ZHANGYou-tong.DisplacementWaveletofPiezoelectric ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21葛承垄,朱元昌,邸彦强,孟宪国.面向一类混合退化装备RUL预测的平行仿真技术[J].北京理工大学学报(自然科学版),2019,39(4):399~405.GECheng-long,ZHUYuan-chang,DIYan-qiang,MENGXian-guo.RULPredictionOriented ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21杨天识,刁培金,梁露露,常震.基于OpenFlow的蜜罐主动取证技术[J].北京理工大学学报(自然科学版),2019,39(5):545~550.YANGTian-shi,DIAOPei-jin,LIANGlu-lu,CHANGZhen.ActiveForensicsTechnologyofHone ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21肖俊波,杨国来,李洪强,宋杰,邱明,廖振强.一种小口径自动炮复合型减后坐技术研究[J].北京理工大学学报(自然科学版),2019,39(8):771~776.XIAOJun-bo,YANGGuo-lai,LIHong-qiang,SONGJie,QIUMing,LIAOZhen-qiang.Tech ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张惠平,余跃,王宏伦.基于自抗扰的高超再入飞行器轨迹线性化控制技术[J].北京理工大学学报(自然科学版),2019,39(8):852~858.ZHANGHui-ping,YUYue,WANGHong-lun.ResearchonADRC-BasedTrajectoryLinearizationCo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21杨诗雨,苏丽丽,侯元伟,郝永乐,李伟平.面向漏洞管理的工作流技术应用研究[J].北京理工大学学报(自然科学版),2019,39(9):967~973.YANGShi-yu,SULi-li,HOUYuan-wei,HAOYong-le,LIWei-ping.ResearchonWorkflowTech ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21郭磊,邢立华,袁倩,葛方俊.干式生化分析仪机载环境力学适应性技术研究[J].北京理工大学学报(自然科学版),2019,39(10):1045~1050.GUOLei,XINGLi-hua,YUANQian,GEFang-jun.ResearchonMechanicalEnvironmentAdapt ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |