二维码(扫一下试试看!) | 优化分级T-S模糊控制动态估计纯电动汽车电池健康状态 | Dynamic Prediction of Pure Electric Vehicle Battery State of Health by Optimized and Graded T-S Fuzzy Control | 投稿时间:2018-05-04 | DOI:10.15918/j.tbit1001-0645.2019.06.010 | 中文关键词:SOH累计充电循环次数计量法二分查表法T-S模糊控制动态模型 | English Keywords:SOHmeasuring method of accumulative charge cycle timesbinary look-up table methodT-S fuzzy controldynamic model | 基金项目:国家自然科学基金资助项目(61463020);江西省自然科学基金资助项目(20151BAB206034) | | 摘要点击次数:854 | 全文下载次数:416 | 中文摘要: | 针对纯电动汽车动力电池健康状态(state of health,SOH)预测中非线性影响因素多、算法繁杂、难以在单片机开发平台中实现等难点,首先利用累计充电循环次数计量法得到使用循环次数,将SOH与使用循环次数、内阻变化量、电压降值的相关非线性关系转换成离散的二维数据表,依据使用条件,采用二分查表法获得不同估计方法下SOH值;再将使用循环次数、电压降值和内阻变化量作为输入量,以相应SOH的权重作为输出,利用T-S模糊控制建立SOH动态预测模型,根据权重和边界条件计算得到SOH.仿真结果表明,所提方法最大预测误差4.3%,响应时间55 ms内,预测效果比现有方法显著提高. | English Summary: | Due to the state of health (SOH) prediction of pure electric vehicle power battery relates to many non-linear factors and complicated algorithms, it is difficult to accomplish in singlechip platform. In order to overcome the difficulty, a new method was proposed. Firstly, a method for counting the accumulative charging cycles was used to calculate the number of battery use cycles. Then the nonlinear relationship between SOH and the number of cycles, the variation of internal resistance and the value of voltage drop were transformed into a discrete two-dimensional datasheet. According to the use conditions, the SOH values under different estimation methods could be obtained by using the binary look-up table method. Secondly, taking the number of cycles, voltage drop and internal resistance variation as input and the weight of corresponding SOH as output, a SOH dynamic prediction model was established based on T-S fuzzy control. According to the weights and boundary conditions, the SOH could be calculated. The simulation results show that the proposed method has a maximum prediction error of 4.3% and a response time of 55 ms, and the prediction effect is much better than that of the existing methods. | 查看全文查看/发表评论下载PDF阅读器 | |
李梁,李剑飞,张大伟,王宁飞.自由漂浮空间双臂机器人动目标抓捕控制[J].北京理工大学学报(自然科学版),2019,39(6):615~623.LILiang,LIJian-fei,ZHANGDa-wei,WANGNing-fei.ControlofFree-FloatingSpaceDual-Ar ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张惠瑾,杨艳玲,李星,刘永旺,赵锂.银离子-热力复合冲击消毒对生活热水管壁生物膜的控制作用[J].北京理工大学学报(自然科学版),2019,39(6):655~660.ZHANGHui-jin,YANGYan-ling,LIXing,LIUYong-wang,ZHAOLi.TheControlEff ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈潇凯,雷浩,刘佳辉,李孟强.控制学科在环的主动悬架多学科设计优化[J].北京理工大学学报(自然科学版),2019,39(7):683~687.CHENXiao-kai,LEIHao,LIUJia-hui,LIMeng-qiang.MultidisciplinaryDesignOptimizatio ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈特,陈龙,徐兴,蔡英凤,江浩斌.基于Hamilton理论的无人车路径跟踪控制[J].北京理工大学学报(自然科学版),2019,39(7):676~682.CHENTe,CHENLong,XUXing,CAIYing-feng,JIANGHao-bin.PathFollowingControlofA ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21皮大伟,谢伯元,王显会,王洪亮,王尔烈,李娇,王利辉.电动式主动稳定杆能耗最优控制方法[J].北京理工大学学报(自然科学版),2019,39(7):694~698.PIDa-wei,XIEBo-yuan,WANGXian-hui,WANGHong-liang,WANGEr-lie,LIJiao,WA ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21简容,黎桐辛,周渊,李舟军,韩心慧.一种多层次的自动化通用Android脱壳系统及其应用[J].北京理工大学学报(自然科学版),2019,39(7):725~731.JIANRong,LITong-xin,ZHOUYuan,LIZhou-jun,HANXin-hui.DesignandApplica ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21马国梁.基于修正质点弹道模型的双旋弹控制效果分析[J].北京理工大学学报(自然科学版),2019,39(8):777~783.MAGuo-liang.ControlEffectAnalysisofDual-SpinProjectileBasedonModifiedMassPointTrajector ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张惠平,余跃,王宏伦.基于自抗扰的高超再入飞行器轨迹线性化控制技术[J].北京理工大学学报(自然科学版),2019,39(8):852~858.ZHANGHui-ping,YUYue,WANGHong-lun.ResearchonADRC-BasedTrajectoryLinearizationCo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21李春芾,席军强,陈慧岩.离合器到离合器动力降挡过程控制机理研究[J].北京理工大学学报(自然科学版),2019,39(9):918~924.LIChun-fu,XIJun-qiang,CHENHui-yan.StudyontheControlMechanismofClutch-to-ClutchPo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21殷婷婷,贾方秀,于纪言,王晓鸣.基于扩张状态观测器的双旋弹丸舵翼转速预测控制[J].北京理工大学学报(自然科学版),2019,39(10):1057~1062,1068.YINTing-ting,JIAFang-xiu,YUJi-yan,WANGXiao-ming.DirectModelPredic ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |