二维码(扫一下试试看!) | 深度学习源代码缺陷检测方法 | Source Code Defect Detection Based on Deep Learning | 投稿时间:2018-10-16 | DOI:10.15918/j.tbit1001-0645.2018.396 | 中文关键词:缺陷检测深度学习静态分析语义特征语法特征 | English Keywords:defect detectiondeep learningstatic analysissemantic featuresyntactic feature | 基金项目:国家自然科学基金资助项目(U1636115,U1736209) | | 摘要点击次数:843 | 全文下载次数:351 | 中文摘要: | 针对由于传统的源代码缺陷分析技术依赖于分析人员的对安全问题的认识以及长期经验积累造成的缺陷检测误报率、漏报率较高的问题,提出了一种深度学习算法源代码缺陷检测方法.该方法根据深度学习算法,利用程序源代码的抽象语法树、数据流特征,通过训练源代码缺陷分类器完成源代码缺陷检测工作.其依据的关键理论是应用深度学习算法及自然语言处理中的词嵌套算法学习源代码抽象语法树和数据流中蕴含的深层次语义特征和语法特征,提出了应用于源代码缺陷检测的深度学习一般框架.使用公开数据集SARD对提出的方法进行验证,研究结果表明该方法在代码缺陷检测的准确率、召回率、误报率和漏报率方面均优于现有的检测方法. | English Summary: | The development and progress of traditional source code defect analysis techniques rely mainly on analysts' understanding of safety issues and long-term experience. To improve the quality of source code defect detection and report, a source code defect detection method was proposed based on deep learning algorithm. Firstly, introducing an abstract syntactic tree of program source code and the data stream features, and training source code defect sorter, the method was arranged to achieve source code defect detection according to the deep learning algorithm. And then,analyzing the abstract syntactic tree of source code and the semantic and syntactic feature contained in the data stream, a general framework was proposed for deep learning based source code defect detection according to the key theories, deep learning algorithm and word nesting algorithm in nature language processing. Finally, an open data set SARD was used to validate the proposed method. The experimental results show that, the proposed method can learn semantic and syntactic features hidden in the source code and outperform the existing methods in terms of accuracy, recall rate, false positive rate, and false negative rate. | 查看全文查看/发表评论下载PDF阅读器 | |
李维浩,姚世明,李蔚清,苏智勇.面向AR沙盘异地协同标绘的动作重构技术[J].北京理工大学学报(自然科学版),2019,39(12):1298~1303,1320.LIWei-hao,YAOShi-ming,LIWei-qing,SUZhi-yong.AMotionReconstructionTec ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2019年总目次(第39卷)[J].北京理工大学学报(自然科学版),2019,39(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2019,39(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张志广,李宁,包云肽,张阳天.基于小波变换的离子迁移谱信号处理技术[J].北京理工大学学报(自然科学版),2019,39(S1):164~167.ZHANGZhi-Guang,LINing,BAOYun-Tai,ZHANGYang-Tian.SignalProcessingTechnologyfor ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21汪怡平,郭承奇,王涛,黎帅,姚云龙.基于自由变形技术的Ahmed模型气动减阻优化[J].北京理工大学学报(自然科学版),2018,38(3):221~228.WANGYi-ping,GUOCheng-qi,WANGTao,LIShuai,YAOYun-long.AerodynamicDragRedu ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21孙崔源,薛里,孟海利,付天杰,康永全.几种典型爆破振动控制技术的试验研究[J].北京理工大学学报(自然科学版),2018,38(4):359~363,370.SUNCui-yuan,XUELi,MENGHai-li,FUTian-jie,KANGYong-quan.ExperimentalResea ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王登峰,蔡珂芳,张帅,马明辉.基于激光拼焊技术的汽车B柱结构优化设计[J].北京理工大学学报(自然科学版),2018,38(7):691~697,708.WANGDeng-feng,CAIKe-fang,ZHANGShuai,MAMing-hui.StructureDesignofAutomotiv ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21范世鹏,祁琪,路坤锋,吴广,李伶.基于改进人工势场法的巡航导弹自主避障技术[J].北京理工大学学报(自然科学版),2018,38(8):828~834.FANShi-peng,QIQi,LUKun-feng,WUGuang,LILing.AutonomousCollisionAvoidanceTec ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21邵楠,步志超,李柏,陈玉宝.清远连州CINRAD/SA-D型业务试验双偏振天气雷达技术评估[J].北京理工大学学报(自然科学版),2018,38(9):953~958.SHAONan,BUZhi-chao,LIBai,CHENYu-bao.TheTechnologyEvaluationofS-Ban ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21邱忠超,张卫民,高玄怡,张瑞蕾.基于PSO-LSSVM的疲劳裂纹漏磁定量识别技术[J].北京理工大学学报(自然科学版),2018,38(11):1101~1104,1140.QIUZhong-chao,ZHANGWei-min,GAOXuan-yi,ZHANGRui-lei.Quantitative ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2018年总目次(第38卷)[J].北京理工大学学报(自然科学版),2018,38(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2018,38(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |