删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于决策树和改进SVM混合模型的语音情感识别

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于决策树和改进SVM混合模型的语音情感识别
Speech Emotion Recognition Based on Decision Tree and Improved SVM Mixed Model
投稿时间:2015-11-12
DOI:10.15918/j.tbit1001-0645.2017.04.011
中文关键词:人机交互情感识别支持向量机决策树
English Keywords:human-computer interactionemotion recognitionsupport vector machinedecision tree
基金项目:国家自然科学基金资助项目(61540007,61373100);虚拟现实技术与系统国家重点实验室资助项目(BUAA-VR-15KF02,BUAA-VR-16KF-13)
作者单位
赵涓涓太原理工大学 计算机科学与技术学院, 山西, 太原 030024
马瑞良太原理工大学 计算机科学与技术学院, 山西, 太原 030024
张小龙太原理工大学 计算机科学与技术学院, 山西, 太原 030024
摘要点击次数:1313
全文下载次数:2184
中文摘要:
为有效提高语音情感识别的准确性,达到人机和谐交互的目的,本文提出了一种基于决策树和改进SVM混合模型的语音情感识别方法,有效地避免了无界泛化误差、分类器数目多、受限优化等问题,提高了悲伤、喜悦、愤怒、厌恶、惊讶、恐惧6种基本情感识别效率。实验结果表明,该方法识别准确率为87.58%,与传统的支持向量机和人工神经网络方法相比,有更高的抗噪声能力和稳定性,能得到更高的识别准确率,而且有较强的实用性和推广能力。
English Summary:
To effectively improve the accuracy of speech emotion recognition in intelligent man-machine harmonious interaction, a method of speech emotion recognition was proposed based on decision tree and an improved SVM mixed model. This method can avoid the tree unbounded generalization error, more the number of classifiers and other shortcomings, while taking advantage of SVM-KNN mixed model to avoid constrained optimization problems and improve the recognition efficiency. In this paper, six basic emotions were identified, including sadness, joy, anger, disgust, surprise, fear. Experimental results show that this method can effectively identify six basic emotions. Compared with the traditional support vector machine and artificial neural network method, this method can get higher recognition accuracy, better stability, strong practicability and generalization ability.
查看全文查看/发表评论下载PDF阅读器
相关话题/计算机科学与技术学院 太原理工大学 山西 中文 优化