 二维码(扫一下试试看!) | 基于决策树和改进SVM混合模型的语音情感识别 | Speech Emotion Recognition Based on Decision Tree and Improved SVM Mixed Model | 投稿时间:2015-11-12 | DOI:10.15918/j.tbit1001-0645.2017.04.011 | 中文关键词:人机交互情感识别支持向量机决策树 | English Keywords:human-computer interactionemotion recognitionsupport vector machinedecision tree | 基金项目:国家自然科学基金资助项目(61540007,61373100);虚拟现实技术与系统国家重点实验室资助项目(BUAA-VR-15KF02,BUAA-VR-16KF-13) | | 摘要点击次数:1313 | 全文下载次数:2184 | 中文摘要: | 为有效提高语音情感识别的准确性,达到人机和谐交互的目的,本文提出了一种基于决策树和改进SVM混合模型的语音情感识别方法,有效地避免了无界泛化误差、分类器数目多、受限优化等问题,提高了悲伤、喜悦、愤怒、厌恶、惊讶、恐惧6种基本情感识别效率。实验结果表明,该方法识别准确率为87.58%,与传统的支持向量机和人工神经网络方法相比,有更高的抗噪声能力和稳定性,能得到更高的识别准确率,而且有较强的实用性和推广能力。 | English Summary: | To effectively improve the accuracy of speech emotion recognition in intelligent man-machine harmonious interaction, a method of speech emotion recognition was proposed based on decision tree and an improved SVM mixed model. This method can avoid the tree unbounded generalization error, more the number of classifiers and other shortcomings, while taking advantage of SVM-KNN mixed model to avoid constrained optimization problems and improve the recognition efficiency. In this paper, six basic emotions were identified, including sadness, joy, anger, disgust, surprise, fear. Experimental results show that this method can effectively identify six basic emotions. Compared with the traditional support vector machine and artificial neural network method, this method can get higher recognition accuracy, better stability, strong practicability and generalization ability. | 查看全文查看/发表评论下载PDF阅读器 | |
王强,叶东,范宁军,吴炎烜.含有J2项摄动的卫星追逃轨道优化[J].北京理工大学学报(自然科学版),2017,37(4):418~423.WANGQiang,YEDong,FANNing-jun,WUYan-xuan.PursuitEvasionGamewithJ2Perturbation[J].T ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21邱文杰,孟秀云.基于hp自适应伪谱法的飞行器多阶段轨迹优化[J].北京理工大学学报(自然科学版),2017,37(4):412~417.QIUWen-jie,MENGXiu-yun.Multi-PhaseTrajectoryOptimizationofVehicleBasedonhp-Adaptiv ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21韩宝玲,赵锐,罗庆生,徐峰,赵嘉珩.基于粒子群算法的四足机器人静步态优化方法[J].北京理工大学学报(自然科学版),2017,37(5):461~465.HANBao-ling,ZHAORui,LUOQing-sheng,XUFeng,ZHAOJia-heng.StaticGaitOptimizat ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21薛艳明,彭云柯,高飞.基于压缩感知的OFDM稀疏信道估计导频优化算法[J].北京理工大学学报(自然科学版),2017,37(5):511~514.XUEYan-ming,PENGYun-ke,GAOFei.OptimizedPilotPlacementforCompressiveSensingBas ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21辛鹏飞,荣吉利,吴志培,项大林,杨永泰.基于粒子群算法的空间机械臂关节驱动力矩优化设计[J].北京理工大学学报(自然科学版),2017,37(8):813~817.XINPeng-fei,RONGJi-li,WUZhi-pei,XIANGDa-lin,YANGYong-tai.JointActuat ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21付铁,朱朝辉,丁洪生,张庆东.一种7R冗余机械臂的容错空间优化[J].北京理工大学学报(自然科学版),2017,37(9):933~936.FUTie,ZHUZhao-hui,DINGHong-sheng,ZHANGQing-dong.OptimizationofFault-TolerantWork ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21荣吉利,夏鹏,冯志伟,项大林.抛物面天线反射面参数化建模与热变形优化分析[J].北京理工大学学报(自然科学版),2017,37(10):998~1002,1008.RONGJi-li,XIAPeng,FENGZhi-wei,XIANGDa-lin.ParameterizedModelingandTh ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21赵中楠,王健,乔佩利.基于多源协同感知的目标追踪优化模型[J].北京理工大学学报(自然科学版),2017,37(11):1137~1143.ZHAOZhong-nan,WANGJian,QIAOPei-li.OptimizationModelofTargetTrackingBasedonMulti- ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21沈思,朱丹浩.基于深度学习的中文地名识别研究[J].北京理工大学学报(自然科学版),2017,37(11):1150~1155.SHENSi,ZHUDan-hao.ChinesePlaceNameRecognitionBasedonDeepLearning[J].TransactionsofBeij ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21马锐,任帅敏,马科,胡昌振,薛静锋.基于粒子群优化算法的Android应用自动化测试方法[J].北京理工大学学报(自然科学版),2017,37(12):1265~1270.MARui,RENShuai-min,MAKe,HUChang-zhen,XUEJing-feng.TestAutomation ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |