删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

液压泵故障诊断稀疏编码方法研究

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
液压泵故障诊断稀疏编码方法研究
A Fault Diagnosis Method Based on Sparse Coding for Hydraulic Pump
投稿时间:2015-05-11
DOI:10.15918/j.tbit1001-0645.2017.05.003
中文关键词:液压泵奇异值分解正交匹配追踪故障诊断
English Keywords:hydraulic pumpK-SVDOMPfault diagnosis
基金项目:国家自然科学基金项目资助(51175511)
作者单位E-mail
王鹏飞第四军医大学, 陕西, 西安 710032
王新晴解放军理工大学, 江苏, 南京 210007wwwxxxqqq@126.com
朱会杰解放军理工大学, 江苏, 南京 210007
李艳峰解放军理工大学, 江苏, 南京 210007
张梅军解放军理工大学, 江苏, 南京 210007
摘要点击次数:915
全文下载次数:959
中文摘要:
针对液压泵故障特征难以提取、诊断过程复杂、自动化程度低等特点,将稀疏编码方法应用于液压泵故障诊断.通过对液压泵泵壳处振动信号进行时频域变换,将变换后的信号作为样本,采用K-SVD算法对训练样本进行字典学习以获取字典,利用正交匹配追踪算法对测试信号进行分解与重构,通过不同类别字典对测试信号的重构率大小进行故障种类识别,实现液压泵故障分类.通过试验验证并与BP神经网络、支持向量机对比,结果表明稀疏编码方法具有对故障识别速度快、准确率高、稳定性好等优点,可以有效地实现对液压泵故障的诊断.
English Summary:
Due to the problems existing in the process of hydraulic pump fault diagnosis, the difficulty and the complexity to extract weak feature of the failure hydraulic pump and to automate, a sparse coding method was proposed for the hydraulic pump fault diagnosis. Firstly, the vibration signals were demodulated and transformed to frequency domain, then the K-SVD algorithm was used to obtain the dictionary from the learning of training samples, at last, the orthogonal matching pursuit algorithm was used to decompose and reconstruct the test signals. The classification of the failure of the hydraulic pump was achieved according to the reconstruction rate of the testing signal in different types of dictionary. Compared with BP neural network and support vector machine (SVM), the proposed sparse coding method shows a faster recognition speed, higher accuracy and better stability, and it can realize the fault diagnosis of hydraulic pump effectively.
查看全文查看/发表评论下载PDF阅读器
相关话题/解放军理工大学 江苏 信号 中文 第四军医大学