删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于一种自适应核学习的KECA子空间故障特征提取

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于一种自适应核学习的KECA子空间故障特征提取
A Method for Feature Extraction in KECA Feature Subspace Based on Adaptive Kernel Learning
投稿时间:2016-03-03
DOI:10.15918/j.tbit1001-0645.2017.08.017
中文关键词:核熵元分析Fisher区别分析自适应核函数特征提取故障识别
English Keywords:kernel entropy component analysisFisher discrimination analysisadaptive kernelfeature extractionfault identification
基金项目:国家自然科学基金资助项目(61571454);国家部委预研基金资助项目(9140A27020214JB14435)
摘要点击次数:718
全文下载次数:499
中文摘要:
核属性约简方法对于去除冗余信息,调整数据非线性结构具有独特的优势.针对航空电子设备故障诊断中有效特征提取困难,核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自适应核函数优化学习的核熵元分析(kernel entropy component analysis,KECA)特征提取方法.首先针对一种自适应核函数基于改进的Fisher核矩阵测量准则建立了一种面向多分类任务的核函数优化框架,然后将优化结果与KECA相结合,通过在KECA特征子空间中选择对输入数据Renyi熵估计有较大贡献的核矩阵特征向量来实现故障特征提取.实验结果表明,本文方法不仅提升了分类精度,而且对噪声具有一定的抑制作用,具有良好的泛化性能.
English Summary:
Kernel-based attribute reduction methods have shown great advantages for removing redundant information and adjusting nonlinear structure of input data. But in real applications, it is difficult for kernel-based attribute reduction methods to select optimal parameters. To do this, a new feature extraction method based on the optimization learning of adaptive kernel function was proposed in this paper. By use of improved Fisher kernel matrix measure criterion, an optimization framework of adaptive kernel function was established to deal with multi-classification task. Combining with optimization results, eigenvectors which make greater contribution to Renyi entropy estimation of input data were selected. New features were extracted based on selected eigenvectors in KECA feature subspace. Experimental results show that presented method can not only enhance the classification accuracy, but also restrain noise interference.
查看全文查看/发表评论下载PDF阅读器
閹兼粎鍌�2娑撳洨顫掗懓鍐埡閼板啳鐦夐悽闈涚摍娑旓讣绱欐0妯虹氨閿涘矁顫嬫0鎴礆閸忓秷鍨傞悽锟�
婢堆囧劥閸掑棛顏㈤棄瀣厴閺勵垳顑囨稉鈧▎陇鈧啰鐖洪敍灞筋嚠娴滃骸顩ф担鏇熺叀閹靛彞绗撴稉姘愁嚦閹稿洤鐣鹃弫娆愭綏閿涘本鍨ㄧ拋鍛婃箒瀵板牆顦块悿鎴︽6閵嗕境ree婢归€涙〃閸掑棗顒熸稊鐘电秹閼板啰鐖哄ǎ杈偓鏇氱瑩娑撴俺顕虫潏鍛嚤20楠炶揪绱濋幀鑽ょ波娴滃棜绉寸€圭偟鏁ら惃鍕瘹鐎规碍鏆€閺夋劖鐓$拠銏℃煙濞夋洖寮锋径宥勭瘎閺傝纭堕敍灞炬箒闂団偓鐟曚胶娈戦惇瀣箖閺夛拷
相关话题/海军航空工程学院 山东 空间 优化 数据

鐟曚焦澹橀懓鍐埡閼板啫宕ユ稉鎾茬瑹鐠囧墽婀℃0妯糕偓渚€顣芥惔鎾扁偓浣筋潒妫版埊绱垫潻娆撳櫡鐠у嫭绨搾鍛弿閿涗礁婀痪鍨帳鐠愬綊妲勭拠浼欑磼
2娑撳洨顫掗懓鍐埡閼板啫宕ラ悽闈涚摍娑旓讣绱欐0妯虹氨閵嗕浇顫嬫0鎴欌偓浣稿弿婵傛绁弬娆欑礆閸欏﹤宸婚獮瀵告埂妫版﹫绱濆☉鐢垫磰547閹碘偓闂勩垺鐗�4娑撳洣缍戞稉顏団偓鍐埡閼板啫宕ユ稉鎾茬瑹缁夋垹娲伴妴浣解偓鍐埡閸忣剙鍙$拠鎾呯礄閺€鎸庝笉閼昏精顕㈤弫鏉款劅閿涘鈧拷40缁夊秳绗撴稉姘鳖敋婢诡偓绱欓柌鎴g€虹涵鏇烇紜閵嗕府BA閵嗕礁娴楅梽鍛櫌閸旓紕顢氭竟顐犫偓浣规煀闂傝绱堕幘顓狀敋婢诡偁鈧胶銇炴导姘紣娴f粎顢氭竟顐ょ搼閿涘鈧拷28缁鎮撶粵澶婎劅閸旀稓鏁电涵鏇氱瑩娑撴哎鈧拷1130缁夊秶绮¢崗鍛婃殌閺夋劑鈧倹妫ょ拋鐑樺亶閺勵垳婀℃0妯荤川缂佸啨鈧線顣芥惔鎾冲煕妫版﹫绱濇潻妯绘Ц婢跺秳绡勯弫娆愭綏閿涘奔绔存稉鐚嘔P娴兼艾鎲抽崸鍥у讲濠娐ゅ喕閹劎娈戦棁鈧Ч鍌樷偓锟�