删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

The Battle to Sequence the Bread Wheat Genome: A Tale of the Three Kingdoms

本站小编 Free考研考试/2022-01-03

In the year 2018, the world witnessed the finale of the race to sequence the genome of the world’s most widely grown crop, the common wheat. Wheat has been known to bear a notoriously large and complicated genome of a polyploidy nature. A decade competition to sequence the wheat genome initiated with a single consortium of multiple countries, taking a conventional strategy similar to that for sequencing Arabidopsis and rice, became ferocious over time as both sequencing technologies and genome assembling methodologies advanced. At different stages, multiple versions of genome sequences of the same variety (e.g., Chinese Spring) were produced by several groups with their special strategies. Finally, 16 years after the rice genome was finished and 9 years after that of maize, the wheat research community now possesses its own reference genome. Armed with these genomics tools, wheat will reestablish itself as a model for polyploid plants in studying the mechanisms of polyploidy evolution, domestication, genetic and epigenetic regulation of homoeolog expression, as well as defining its genetic diversity and breeding on the genome level. The enhanced resolution of the wheat genome should also help accelerate development of wheat cultivars that are more tolerant to biotic and/or abiotic stresses with better quality and higher yield.
基因组序列是研究一个物种的进化、基因功能和基因调控的重要信息和工具。六倍体小麦基因组是水稻基因组的40倍是玉米基因组的5倍。庞大且复杂的小麦基因组决定其测序过程将如三国演义,魏蜀吴争长相雄。该综述把小麦基因组测序过程分成黑暗、黎明、高潮和春天四个阶段,系统梳理了小麦及其供体种基因组测序的历史,介绍了不同基因组版本采取的测序技术和组装策略以及达到的组装水平,总结了近年来小麦功能基因组研究的部分主要进展。故事从2005年成立由多个国家组成的国际小麦测序组织(IWGSC)讲起。早期,IWGSC尝试采取与拟南芥和水稻测序类似的常规策略来测定和组装小麦基因组,即通过构建细菌染色体(BAC)文库-物理图谱-最小物理通路BAC测序的方法。按照这个策略,光是构建物理图谱一项就需要花费几百万美元,而且由于基因组过于庞大,没有实验室能够单独完成这个工作。于是,IWGSC先用流式细胞仪器将一个个染色体甚至是染色体臂分离出来,分别建库,然后再运送到几十个国家的研究小组,分别构建物理图谱。在将近10年的时间里,由于经费、人员、技术、文库质量等诸多原因,小麦基因组测序踽踽前行,不知始终。而同一时期,另外两个禾本科作物-高粱和玉米的基因组分别于2009年和2010年得以完成。2012年小麦的兄弟种大麦的基因组也得到了破译。于是,就有科学家建议先行测定小麦的二倍体供体种基因组,以加快六倍体小麦的测序速度和功能基因组研究。2013年,两个二倍体供体种基因组乌拉尔图小麦(AA)和山羊草(DD)的基因组草图由中国科学家在Nature发表。而作为IWGSC成员的英国诺丁汉大学的科学家也匆匆忙忙于2014年在Science发表了由混合BAC文库鸟枪法454测序序列组装的中国春草图(CSS)。同年,利用传统方法测定的3B染色体序列也由法国科学家发表。2017年英国约翰英尼斯研究所通过提高测序深度和改进组装算法获得了中国春基因组的改进版TGACv1,但只有78%的基因组序列被锚碇到染色体上。2017年一个新成立的以色列生物信息公司NRGene的出现,使得解决像小麦这样的复杂基因组的组装难题有了新的转机。这期间发表的野生二粒小麦(四倍体)、乌拉尔图小麦和山羊草的改进版本(2017)以及2019年发表的栽培二粒小麦(四倍体)多多少少都受惠于NRGene的DeNovoMAGIC2软件的使用。2017年由IWGSC主导,加州大学戴维斯分校领衔的高质量山羊草基因组在Science发表。2018年,通过13年的努力,一个基本达到参考基因组质量水平的中国春序列(Refseqv1.0)终于完成,并在Science上发表。回顾小麦基因组测序的历程,我们发现几乎每个小麦基因组及其不同版本都发表在国际顶尖杂志上:乌拉尔图基因组产生了两个版本,均发表在Nature;山羊草基因组则有三个版本分别发表在Nature,Nature Plants和Science;而中国春的三个版本中有两个发表在Science,3B染色体也在Science发表。经过这些年三国演义式的左冲右突,在水稻基因组完成16年和玉米基因组完成9年之后,普通小麦的基因组测序终于尘埃落定,尽管其质量还有很大提升的空间。小麦基因组序列的获得开启了小麦重新作为多倍体植物的模型,用于研究年轻多倍体进化,驯化,部分同源基因表达调控的遗传和表观遗传机制的新纪元,大大推进了小麦产量抗病相关基因挖掘,加速了高产高抗优良品种的创制。该综述于近期发表于Genomic Proteomics & Bioinformatics杂志,中国农业科学院作物科学研究所毛龙研究员为责任作者,实验室官健涛博士为第一作者。作者感谢国家自然基金和中国农科院创新工程大力支持。





PDF全文下载地址:

http://gpb.big.ac.cn/articles/download/782
相关话题/gen