删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

GPA: A Microbial Genetic Polymorphisms Assignments Tool in Metagenomic Analysis by Bayesian Estimati

本站小编 Free考研考试/2022-01-03

闂備礁缍婂ḿ褔顢栭崱妞绘敠闁逞屽墴閻擃偊宕剁捄杞板枈闂侀€炲苯澧伴柛鐘查叄瀹曘垽濡堕崶銊ヮ伕闁荤喐鐟ョ€氼參寮抽崼銉︾厱闁归偊鍓欓〃娆戠磼閸欐ê宓嗙€规洏鍔戦弫鎾绘晸閿燂拷闂備焦瀵х粙鎴︽儔婵傚憡鍋熸繛鎴欏灩绾偓闁诲骸婀辨慨瀵哥不椤栫偞鐓曟繛鍡樺姉婢ь剚绻濋埀顒勫箥椤旀儳宕ュ┑鐐叉鐢偤濡堕锔界厸闁稿本绋撻幊鍡欐偖濞嗘挻鐓曟俊顖欒閸庢垹绱撻崒姘兼Ш闁逞屽墴濞佳兾涘☉銏″亯婵犲﹤鐗婇弲顒勬煥閻曞倹瀚�
Identifying antimicrobial resistant (AMR) bacteria in metagenomics samples is essential for public health and food safety. Next-generation sequencing (NGS) technology has provided a powerful tool in identifying the genetic variation and constructing the correlations between genotype and phenotype in humans and other species. However, for complex bacterial samples, there lacks a powerful bioinformatic tool to identify genetic polymorphisms or copy number variations (CNVs) for given genes. Here we provide a Bayesian framework for genotype estimation for mixtures of multiple bacteria, named as Genetic Polymorphisms Assignments (GPA). Simulation results showed that GPA has reduced the false discovery rate (FDR) and mean absolute error (MAE) in CNV and single nucleotide variant (SNV) identification. This framework was validated by whole-genome sequencing and Pool-seq data from Klebsiella pneumoniae with multiple bacteria mixture models, and showed the high accuracy in the allele fraction detections of CNVs and SNVs in AMR genes between two populations. The quantitative study on the changes of AMR genes fraction between two samples showed a good consistency with the AMR pattern observed in the individual strains. Also, the framework together with the genome annotation and population comparison tools has been integrated into an application, which could provide a complete solution for AMR gene identification and quantification in unculturable clinical samples. The GPA package is available at https://github.com/IID-DTH/GPA-package.
随着细菌耐药的增加,对于细菌抗生素耐药的监测,在公共卫生和食品安全领域越来越重要。近期,高通量测序技术的重大突破,为人类和其他物种中基因型检测提供了有效的工具,也为建立基因型-表型关联提供了重要手段。但是,由于临床混合样本中,菌群结构复杂,相关的生物信息挖掘工具及软件,仍然缺乏。本研究中,我们建立了一套基于贝叶斯模型的工具,用于复杂细菌菌群中特定基因型检测,称为GPA。在模拟肺炎克雷伯菌基因组数据中,该工具不仅可检测CNV和SNV,而且有效的降低了混合样本中假阳性发现率FDR和平均绝对偏差MAE。进而,我们利用肺炎克雷伯菌的混合测定数据,分析在2009年和2013年两年病人中耐药基因的CNV和SNV突变频率的差异,该结果可成功构建肺炎克雷伯菌基因-耐药表型关联。最后,我们使用了公开的宏基因组数据进行软件评估,表明该方法可用于临床样本中非培养的细菌的鉴定及其耐药基因的定量分析。该工具已经提交至网站 https://github.com/IID-DTH/GPA-package。





PDF全文下载地址:

http://gpb.big.ac.cn/articles/download/693
相关话题/gen

闂備胶鎳撻崥瀣垝鎼淬劌纾奸柨鐕傛嫹2濠电偞鍨堕幐绋棵洪妸鈺嬬稏闁圭儤顨嗛崵鈧梺鍛婂姦娴滅偤宕洪敓鐘崇厾闁哄鐏濋弳銏ゆ煟閿曗偓椤︾敻骞冩禒瀣棃婵炴垶纰嶉幉銈嗙箾閹寸偞顥栭悹渚婄悼濡叉劕鈻庨幇鍓佺煑濠碘槅鍨靛▍锝咁潩閵娾晜鐓ユ繛鎴炨缚閻掗攱銇勯銏╁剱闁挎稒鍔欓獮瀣敍濠婂拋妲撮梻浣呵圭换鎰矓閻戣棄鍨傞柛宀€鍋為崑銊╂煥閻曞倹瀚�
濠电姰鍨归悥銏ゅ炊瑜嶆慨銈夋⒑閸涘﹤绗掓俊顐g洴椤㈡棃濮€閵堝棭妫勯柣搴秵閸犳牠宕㈤幘顔界厸闁告洟娼ч悘锝嗐亜閹存繃澶勭紒瀣樀閸┾偓妞ゆ巻鍋撻柍璇查叄濡鹃亶鏌嶈閸撴瑩宕导瀛樺亯婵炲樊浜濋弲顒勬倶閻愮數鎽傞柛銈囧Т闇夋繝濠傚暣椤庢銇勯埞顓炲婵挳鏌¢崶鈺佹灁闁告瑢鍋撻梻浣哥秺濞佳嗐亹閻愮數绠旈柟鎯ь嚟閳绘梹鎱ㄥΟ璇插闁搞倧绠撻弻鐔虹矙閹稿孩鎮欓梺浼欑秮缁犳牕顕i鈶╂瀻闁归偊鍘剧粙鍕⒑閹稿海鈽夐柡鍫墴瀹曞綊濡歌婵ジ鏌涘☉姗堟敾缂佺姵甯為埀顒€鐏氬姗€鎮ч崱娴板洭宕稿Δ浣镐痪闂佺鎻梽鍕晬閺嶎厽鐓忛柛鈩冩礀椤b暜ee濠电姰鍨圭紞濠囧焵椤掍胶鈯曢柕鍡楀暣閺屾盯骞掗幋鐑嗘濡炪倖甯為崰鎰矙婵犲洦鍋愰柣銏㈡暩鏁堥梻浣稿悑濠㈡﹢宕导瀛樺亯闁告繂濯辨惔銏$秶妞ゆ劗鍠庢禍楣冩煛閸ャ劍鐨戦柣鐔叉櫅閳藉骞樼紙鐘卞濡炪倖娲濆▍鏇炨缚韫囨稑宸濇い鎾楀啯顔�20婵°倗濮烽崑鐘诲箵椤忓棙顫曟繝闈涱儏缁犳垿鏌ゆ慨鎰偓妤€鈻旈姀鐘嗙懓饪伴崘鈺婃%缂備礁顦顓㈠焵椤掆偓濠€閬嶅磻閻旂厧鏋侀柕鍫濐槹閸庡秹鏌涢弴銊ュ闁伙箑缍婇幃妤冩喆閸曨収鏆¢梺鍝勬閸嬫捇姊洪崫鍕垫Ч闁告梹鐗犻幃锟犳晬閸曨剙鐝伴梺闈涚箚閸撴繈鎮″▎鎰濠㈣泛顑嗙粈鈧悗娈垮櫍閺€鍗烆嚗閸曨偒鍚嬮柛鏇ㄥ幘濡叉垿姊洪崫鍕偓浠嬶綖婢跺本鍏滈柛顐f礃閺咁剟鎮橀悙闈涗壕缂佺姵甯″濠氬炊閿濆懍澹曢梺鑽ゅ枑濞叉垿鎳楃捄琛℃灁闁硅揪闄勯崕鎴︽倵閿濆骸骞樼紒鐘崇墵閺屸剝寰勫☉娆忣伓