[1] Ling C, Nie J, Qi L, Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations[J]. SIAM Journal on Optimization, 2009, 20:1286-1310. [2] Qi L, Dai H, Han D. Conditions for strong ellipticity and M-eigenvalues[J]. Frontiers of Mathematics in China, 2009, 4:349-364. [3] Han D, Dai H, Qi L. Conditions for strong ellipticity of anisotropic elastic materials[J]. Journal of Elasticity, 2009, 97:1-13. [4] Qi L. Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computation, 2005, 40:1302-1324. [5] Qi L, Luo Z. Tensor analysis[J]. Frontiers of Mathematics in China, 2009, 4:349-364. [6] Li C, Li Y, Kong X. New eigenvalue inclusion sets for tensors[J]. Numerical Linear Algebra with Applications, 2014, 21:39-50. [7] Li C, Wang F, Zhao J, Zhu Y, Li Y. Criterions for the positive definiteness of real supersymmetric tensors[J]. Journal of Computational and Applied Mathematics, 2014, 255:1-14. [8] Li C, Li Y. Double B-tensors and quasi-double B-tensors[J]. Linear Algebra and its Applications, 2015, 466:343-356. [9] Li C, Zhou J, Li Y. A new Brauer-type eigenvalue localization set for tensors[J]. Linear and Multilinear Algebra, 2016, 64:727-736. [10] Bu C, Wei Y, Sun L, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors[J]. Linear Algebra and its Applications, 2015, 480:168-175. [11] Zhao J, Li C. Singular value inclusion sets for rectangular tensors[J]. Linear and Multilinear Algebra, 2018, 66:1333-1350. [12] Zhao J, Sang C. An S-type upper bound for the largest singular value of nonnegative rectangular tensors[J]. Open Mathematics, 2016, 14:925-933. [13] Ding W, Liu J, Qi L, Yan H. Elasticity M-tensors and the strong ellipticity condition[J]. Applied Mathematics and Computation, 2020, 373:124982. [14] Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourthorder partially symmetric tensor[J]. Numerical Linear Algebra with Applications, 2009, 16:589-601. [15] Li S, Li C, Li Y. M-eigenvalue inclusion intervals for a fourth-order partially symmetric tensor[J]. Journal of Computational and Applied Mathematics, 2019, 356:391-401. [16] Che H, Chen H, Wang Y. On the M-eigenvalue estimation of fourthorder partially symmetric tensors[J]. Journal of Industrial and Management Optimization, 2020, 16:309-324. |