删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

钱子诚 博士:Moduli of Fontaine--Laffaille modules and mod p local-global compatibility: overview

本站小编 Free考研考试/2021-12-26



Academy of Mathematics and Systems Science, CAS
Colloquia & Seminars

Speaker: 钱子诚 博士,University of Toronto
Inviter:
Title:
Moduli of Fontaine--Laffaille modules and mod p local-global compatibility: overview
Time & Venue:
2021.07.12 09:00-11:00 腾讯会议:760 278 516
Abstract:
In a joint work with D. Le, B. V. Le Hung, S. Morra and C. Park, we prove under standard Kisin--Taylor--Wiles condition that the Hecke eigenspace attached to a mod p global Galois representation $\overline{r}$ determines the restriction $\overline{\rho}$ of $\overline{r}$ at a place $v$ about p, if $v$ is unramified over $p$ and a generic Fontaine--Laffaille weight is modular for each place above $p$. The genericity assumption is mild and explicit. In this talk, we sketch some main ingredients of the proof and reduce the main theorem to a key result on the set of invariant functions on the moduli of Fontaine--Laffaille modules.

相关话题/博士 腾讯 会议