删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

数学与系统科学研究院数学研究所导师教师师资介绍简介-李嘉禹

本站小编 Free考研考试/2020-05-21


办公室:N915室
电话:
箱:lijia#math.ac.cn
研究方向:几何分析
主要成果:研究集中在以下方面
1. 调和映照
2. 热流
3. 极小曲面
4. 平均曲率流
5. 流形上分析
表论著:
1. Ding, Weiyue, Li, Jiayu and Liu Qingyue, Evolution of minimal torus in Riemannian manifolds, Invent. Math., 165(2006), 225-242
2. Chen, Jingyi and Li Jiayu, Quaternionic maps and minimal surfaces, Annali della Scuola Normale Superiore di Pisa, Vol.4(2005), 375-388.
3. Han, Xiaoli and Li Jiayu, The mean curvature flow approach to the symplectic isotopy problem, Intern. Math. Research Notice 26(2005), 1611-1620.
4. Chen Jingyi; Li Jiayu, Singularity of Mean Curvature Flow of Lagrangian Submanifolds Invent. Math. 156 (2004), 25--51.
5. Ding Weiyue; Li Jiayu; Li Wei, Nonstationary weak limit of a stationary harmonic map sequence. Comm. Pure Appl. Math. 56 (2003), no. 2, 270--277.
6. Chen Jingyi; Li Jiayu, Mean curvature flow of surface in $4$-manifolds. Adv. Math. 163 (2001), no. 2, 287--309.
7. Li Jiayu, Hermitian-Einstein metrics and Chern number inequalities on parabolic stable bundles over K?hler manifolds. Comm. Anal. Geom. 8 (2000), no. 3, 445--475.
8. Li Jiayu; Narasimhan M. S., Hermitian-Einstein metrics on parabolic stable bundles. Acta Math. Sin. (Engl. Ser.) 15 (1999), no. 1, 93--114.
9. Li Jiayu; Tian Gang A blow-up formula for stationary harmonic maps. Internat. Math. Res. Notices 1998, no. 14, 735--755.
10. Ding Weiyue; Jost Jürgen; Li Jiayu; Wang Guofang The differential equation $\Delta u=8\pi-8\pi he\sp u$ on a compact Riemann surface. Asian J. Math. 1 (1997), no. 2, 230--248.



相关话题/数学 系统