个人简介
2000/10-至今,中国科学院,数学与系统科学研究院,研究员
1995/11-2000/09,中国科学院研究生院,博士生导师
1994/11-2000/09,中国科学院研究生院,教授
1991/09-1994/10,中国科学院研究生院,副教授
1989/05-1991/07,意大利理论物理国际中心,博士后
1987/10-1989/04,中国科学院研究生院,博士后
研究方向
与几何有关的偏微分方程 流形上的极小曲面,调和映射,Hessian商方程,球面上的预定数曲率问题
与随机有关的偏微分方程 Fokker-Planck方程
学术论文
Ji, Min. An a priori estimate for Douglas problem in Riemannian manifolds. Acta Math. Sinica (N.S.) 5 (1989), no. 3, 235–249. This paper is concerned with the Douglas problem in general Riemannian manifolds. For its perturbed problem we establish a uniform a priori estimate under the energy level min {d*,m* +s_{0}} (see Theorem 3.3). This level seems to be the best possible since in case of ?n it is just the Douglas condition.
Ji, Min. A remark on the symmetry of solutions to nonlinear elliptic equations. Pacific J. Math. 153 (1992), no. 1, 157–162. This note gives a necessary and sufficient condition for solutions of second order elliptic equations to be radially symmetric.
Ji, Min; Wang, Guang Yin. Minimal surfaces in Riemannian manifolds. Mem. Amer. Math. Soc. 104 (1993), no. 495, vi+50 pp. A mulitiple solution theory to the Plateau problem in a Riemannian manifold is established. In S^n, the existence of two solutions to this problem is obtained. The Morse-Tompkins-Shiffman Theorem is extended to the case when the ambient space admits no minimal sphere.
Ji, Min. Minimal annuli in Riemannian manifolds. Acta Math. Sinica (N.S.) 9 (1993), no. 1, 74–89. In this paper, a multiple solution theorem for minimal annuli coboundaries in a Riemannian manifold N is established. Especially, when the target manifold N is the standard sphere S^n, it implies the existence of at least two minimal annuli with given pair of wires (Γ1, Γ2) as their common boundaries θ.
Ji, Min. Multiple solutions to the Douglas problem in S^n. Sci. China Ser. A 36 (1993), no. 10, 1162–1168. In S^3 a smooth Jordan curve Γ and a great circle σ which are mutually linked are shown to bound at least two minimal annuli. And in S^n(n≥3) it is proved that there exist at least two minimal annuli bounded by a smooth Jordan curve Γ and a great circle σ provided that σ is disjoint from Γ and intersects a least area surface spanning Γ.
Ji, Min. A simple construction of generalized harmonic maps discontinuous everywhere. Commun. Contemp. Math. 3 (2001), no. 3, 355–362. This paper constructs an everywhere discontinuous harmonic map from a domain of dimension 2 into S^1. Our construction is simpler than that of L. Almeida.
Bao, Jiguang; Chen, Jingyi; Guan, Bo; Ji, Min. Liouville property and regularity of a Hessian quotient equation. Amer. J. Math. 125 (2003), no. 2, 301–316. We are concerned with properties of (convex) solutions to the Hessian quotient equation Sn,k(D^2u) = φ, 1 ≤ k < n. As our first main result we prove some regularity of strong solutions, while the second states that for φ ≡ 1 an entire convex solution with a quadratic growth bound must be a quadratic polynomial.
Ji, Min. On positive scalar curvature on S^2. Calc. Var. Partial Differential Equations 19 (2004), no. 2, 165–182. We consider the problem of prescribing scalar curvature on the standard 2-sphere S^2. It is proved that any positive smooth function on S^2 is the scalar curvature of some pointwise conformal metric, if an associated map has non-zero degree. As a result we improve some previous important results and give some completely new ones.
Ji, Min. Scalar curvature equation on S^n. I. Topological conditions. J. Differential Equations 246 (2009), no. 2, 749–787. This is the first part of a series devoting to the study of the prescribing scalar curvature problem on the standard sphere of any dimension. In the first part, we will adopt the degree-theoretic approach to give a topological condition and some general, explicit conditions on the scalar curvature functions to ensure the solvability of the problem. Our topological condition is imposed on some of simple maps explicitly defined by the scalar curvature function, which is derived from the asymptotic expansion of the boundary map introduced in [A. Chang, P. Yang, A perturbation result in prescribing scalar curvature on S^n, Duke Math. J. 64 (1991) 27–69]. Our conditions, particularly allowing non-isolation and non-degeneracy of the critical points of the scalar curvature functions, can be easily verified in many situations. In the second part of series, we will make a detailed study on the verification of the topological condition. Our results will generalize almost all existing ones in the same direction and meanwhile provide a unified treatment for both symmetric and non-symmetric cases of the scalar curvature functions.
Ji, Min. Scalar curvature equation on S^n. II. Analytic characterizations. J. Differential Equations 246 (2009), no. 2, 788–818. This is the second part of a series devoting to the study of the prescribing scalar curvature problem on the standard sphere of any dimension. By studying topological degrees for certain abstract maps, we will give explicit analytic conditions on the scalar curvature function which verify the topological degree conditions given in the first part of the series to ensure the solvability of the problem. General existence results for the prescribing scalar curvature equation will be given on both H-symmetric and sub-H-symmetric solutions corresponding to H-symmetric scalar curvature functions, as well as on non-symmetric solutions corresponding to symmetric-like scalar curvature functions. Special axisymmetric and axisymmetric-like cases will be also considered. Our analysis will be based on a general approach of dimension reductions and degree calculations by taking advantage of symmetries and symmetric-like properties.
Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei. Integral identity and measure estimates for stationary Fokker-Planck equations. Ann. Probab. 43 (2015), no. 4, 1712–1730. We consider a Fokker–Planck equation in a general domain in R^n with L^{p)_{loc} drift term and W^{1,p}_{loc} diffusion term for any p>n. By deriving an integral identity, we give several measure estimates of regular stationary measures in an exterior domain with respect to diffusion and Lyapunov-like or anti-Lyapunov-like functions. These estimates will be useful to problems such as the existence and nonexistence of stationary measures in a general domain as well as the concentration and limit behaviors of stationary measures as diffusion vanishes.
Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei. Steady states of Fokker-Planck equations: I. Existence. J. Dynam. Differential Equations 27 (2015), no. 3-4, 721–742. This is the first paper in a series concerning the study of steady states of a Fokker–Planck equation in a general domain in R^n with L^{p}_{loc} drift term and W^{1,p}_{loc} diffusion term for any p>n . In this paper, by using the level set method especially the integral identity which we introduced in Huang et al. (Ann Probab, 2015), we obtain several new existence results of steady states, including stationary solutions and measures, of the Fokker–Planck equation with non-degenerate diffusion under Lyapunov-like conditions. As applications of these results, we give some examples on the noise stabilization of an unstable equilibrium and the existence and uniqueness of steady states subject to boundary degeneracy of diffusion in a bounded domain.
Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei. Steady states of Fokker-Planck equations: II. Non-existence. J. Dynam. Differential Equations 27 (2015), no. 3-4, 743–762. This is the second paper in a series concerning the study of steady states, including stationary solutions and measures, of a Fokker–Planck equation in a general domain in R^n with L^{p}_{loc} drift term and W^{1,p}_{loc} diffusion term for any p>n . In this paper, we obtain some non-existence results of stationary measures under conditions involving anti-Lyapunov type of functions associated with the stationary Fokker–Planck equation. When combined with the existence results showed in part I of the series (Huang et al. in J. Dyn Differ Equ 10.1007/s10884-015-9454-x, 2015) contained in the same volume, not only will these results yield necessary and sufficient conditions for the existence of stationary measures, but also they provide a useful tool for one to study noise perturbations of systems of ordinary differential equations, especially with respect to problems of stochastic bifurcations, as demonstrated in some examples contained in this paper. Our analysis is based on the level set method, in particular the integral identity, and measure estimates contained in our work (Huang et al. in Ann Probab 43:1712–1730, 2015).
Ji, Min. Projective Dirichlet boundary condition with applications to a geometric problem. Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 1, 11–24. Given a domain Ω ? R^n, let λ > 0 be an eigenvalue of the elliptic operator L:= ∑^{n}_{i,j=1}(?/?x_{i})(a^{ij}?/?x_{j}) on Ω for Dirichlet condition. For a function f ∈ L^2(Ω), it is known that the linear resonance equation Lu + λu = f in Ω with Dirichlet boundary condition is not always solvable. We give a new boundary condition P_{λ}(u|?Ω) = g, called to be projective Dirichlet condition, such that the linear resonance equation always admits a unique solution u being orthogonal to all of the eigenfunctions corresponding to λ which satisfies ‖u‖_{2,2} ≤ C(‖f‖_{2} + ‖g‖_{2,2}) under suitable regularity assumptions on ?Ω and L, where C is a constant depends only on n, Ω, and L. More a priori estimates, such as W^{2,p}-estimates and the C^{2,α}-estimates etc., are given also. This boundary condition can be viewed as a generalization of the Dirichlet condition to resonance equations and shows its advantage when applying to nonlinear resonance equations. In particular, this enables us to find the new indicatrices with vanishing mean (Cartan) torsion in Minkowski geometry. It is known that the geometry of indicatries is the foundation of Finsler geometry.
Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei. Steady states of Fokker-Planck equations: III. Degenerate diffusion. J. Dynam. Differential Equations 28 (2016), no. 1, 127–141 This is the third paper in a series concerning the study of steady states of a Fokker–Planck equation in a general domain in R^n with L^{p}_{loc} drift term and W^{1,p}_{loc} diffusion term for any p>n. In this paper, we give some existence results of stationary measures of the Fokker–Planck equation under Lyapunov conditions which allow the degeneracy of diffusion.
我的相册
联系方式
地址:中关村东路55号中国科学院数学与系统科学研究院南楼910
电话:**
邮箱:jimin@math.ac.cn
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中国科学院数学与系统科学研究院导师教师师资介绍简介-吉敏
本站小编 Free考研考试/2020-05-19
相关话题/数学 系统
中国科学院数学与系统科学研究院导师教师师资介绍简介-李竞
个人简介2013年3月至今中国科学院数学与系统科学研究院研究员2008年4月至2013年3月中国科学院数学与系统科学研究院副研究员2006年11月至2008年11月日本大阪大学,JSPS博士后2006年4月至2008年3月中国科学院数学与系统科学研究院助理研究员2004年8月至2006年4月中国科学 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-李启寨
个人简介李启寨,博士、研究员通讯地址:中国科学院数学与系统科学研究院,北京市中关村东路55号,100190.办公电话:.电子邮件:liqz@amss.ac.cn研究方向:生物医学统计、分组检测、统计遗传学教育背景博士,概率论与数理统计,2006,中国科学院数学与系统科学研究院学士,统计学,2001, ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-李雷
Professor,ChineseAcademyofSciences,2010-AssociateProfessor,UniversityofSouthernCalifornia,2005-2010AssistantProfessor,UniversityofSouthernCalifornia,2 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-刘秀丽
个人简介刘秀丽,中国科学院数学与系统科学研究院研究员,预测科学研究中心主任助理,2008.4-2009.1与2012.4-2013.1美国IllinoisUniversityatUrbana-Champaign访问****,2015.11-2015.12NewYorkUniversity访问**** ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-刘克
个人简介姓名:刘克(博士生导师)所别:应用数学研究所职称:研究员房间号:南楼609邮箱:kliu@amss.ac.cn学位:理学学士(应用数学与运筹学):中国科学技术大学,1982年,中国哲学博士(应用数学):南澳大利亚大学,1997年,澳大利亚工作经历:1982年9月至1985年9月:中国科学院应 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-李向东
个人简介李向东,男,?1967?年?5?月?28?日出生,1990年本科毕业于武汉大学中法数学班,1999年博士毕业于中国科学院应用数学研究所及葡萄牙里斯本大学,2000-2003年在牛津大学数学研究所从事博士后研究,2003年获法国图卢兹大学MaitredeConference终身职位,2007年 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-骆顺龙
个人简介骆顺龙,1989年毕业于上海交通大学,1995年获武汉大学博士学位,2001年任中国科学院数学与系统科学研究院研究员,博士生导师,2013-2015年任华罗庚应用数学首席研究员。现任中国科学院数学与系统科学研究院应用数学研究所所长,量子计算与量子信息处理研究中心主任。主要从事概率统计和量子信 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-刘志新
个人简介刘志新,女,1979/7/15出生,正高级教育背景2002-09--2007-07中科院数学与系统科学研究院博士学位1998-09--2002-07山东大学学士学位工作经历2016-04--现在,中国科学院数学与系统科学研究院研究员2011-04--2016-03中科院数学与系统科学研究院副 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-邱彦奇
CurriculumVitae2017.06-presentAssociatedProfessor,InstituteofMathematics,AMSS,ChineseAcademyofSciences,Beijing,China2015.10-2017.09ChargédeRecherche(t ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19中国科学院数学与系统科学研究院导师教师师资介绍简介-马志明
个人简介姓 名:马志明所 别:应用数学所职 称:研究员,中国科学院院士研究领域:概率论与随机分析、随机图与随机复杂网络、概率论与生命信息交叉学科电子信箱:mazm@amt.ac.cn马志明,中国科学院数学与系统科学研究院研究员。籍贯山西,出生于四川成都,1978年毕业于重庆师范大学,1984年 ...中科院数学与系统科学研究院 本站小编 Free考研考试 2020-05-19