删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

傅鑫 博士:On the Kahler-Einstein metric near isolated log-canonical singularity

本站小编 Free考研/2020-05-19

闂佺懓鍚嬬划搴ㄥ磼閿燂拷2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煠閺夊灝鏆㈤柣锕€顦甸幃浠嬫濞戞碍鎲ゆ繛鎴炴鐠侊絿妲愬▎鎰剁矗婵☆垵娅e銊╂煥濞戞ḿ鐒锋い顐㈩儐閿涙劙骞嬮婊咁槴闂佺ǹ绻愮粔鐑藉垂閸岀偞鍋ㄩ柨鐕傛嫹
婵犮垹鐖㈤崶褍濮ら梺鍛婂笒濡盯顢旈姀銈嗩棄閻庯綆鍠栭崢鎾煛閸曢潧鐏fい鎴濇处缁嬪鍩€椤掆偓閳诲酣妾遍柍褜鍓欓崯浼存偉濞差亝鏅悘鐐电摂閸ょ姴霉濠婂啴顎楁い鈹嫭濯撮柡鍥╁枔閸欌偓闂佸綊娼цぐ鐐电箔閹惧鈻旀慨妯诲墯閸わ箓鏌熺粙鎸庢悙闁伙綁绠栧顐⑩枎閹邦厾绋勯梺鎸庣☉閺堫剟宕归妸褎濯奸柛娑橈攻缁犳帞鈧灚婢橀悧鍡浰囬崸妤佸仾闁硅揪闄勯敍鏍煏閸℃洖顣╮ee婵犮垹缍婇埀顒佺⊕閵嗗啴鏌涢幒鎴烆棞妞ゆ帞鍠愮粙濠囨偐閻㈢數效闂佸吋婢橀崯浼存偉閸濆媱搴㈡綇椤愮喎浜鹃柡鍥ㄦ皑閻熲晛鈽夐幘缈犱孩妞ゆ洝娅曞ḿ蹇涘川椤撗冩20濡ょ姷鍋犻幓顏嗘濠靛绠戦柤濮愬€楀▔銏犆瑰⿰鍐╊棥缂佸顕埀顒€婀遍崑鐔煎极閵堝鍎嶉柛鏇ㄥ墮閻﹀綊鎮楃憴鍕暡闁哄棌鍋撻梺鍝勵槹閸旀牠鎮¢敍鍕珰闁靛繆鍓濋悡娆愮箾婢跺绀€鐎殿噣鏀卞鍕吋閸曨厾妲戦梺鍝勫€介~澶屾兜閸洘鏅悘鐐靛亾缁犳帡姊婚崶锝呬壕闁荤喐娲戦懗璺衡枔閹达附鍎戦悗锝庡幘缁犳牠鏌℃径娑欏


Academy of Mathematics and Systems Science, CAS
Colloquia & Seminars

Speaker: 傅鑫 博士,罗格斯大学
Inviter:
Title:
On the Kahler-Einstein metric near isolated log-canonical singularity
Time & Venue:
2019.12.31 16:30-17:40 N202
Abstract:
We construct negative Kahler-Einstein metric near an isolated singularity by solving Monge-Ampère equation with Dirichlet boundary, hence largely extends previous work of [21] which constructs Kahler-Einstein metric on singular variety with log terminal singularity. We continue to consider the geometry of the K?hler-Einstein metric we constructed. Especially, in complex dimension 2, we show that all complete local K?hler-Einstein metrics near isolated singularity are asymptotic the same as the model metric constructed in [31, 32] by Kobayashi and Nakamura.

相关话题/博士