删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中国科学技术大学大数据学院导师教师师资介绍简介-何向南
本站小编 Free考研考试/2021-04-24
Email: hexn@ustc.edu.cn
个人主页: http://staff.ustc.edu.cn/~hexn/
地址:School of Information Science and Technology School of Data Science(under construction) University of Science and Technology of China 443 Huangshan Road, Hefei, China 230027
主要研究兴趣:
My research interests span information retrieval, data mining, and multi-media analytics. I have over 60 publications appeared in several top conferences such as SIGIR, WWW, KDD, and MM, and journals including TKDE, TOIS, and TMM. My work on recommender systems has received the Best Paper Award Honourable Mention in WWW 2018 and ACM SIGIR 2016. Moreover, I have served as the (senior) PC member for several top conferences including SIGIR, WWW, KDD, MM etc., and the regular reviewer for journals including TKDE, TOIS, TMM, etc.
招生信息:
If you are in the academia job market: theSchool of Data Science (大数据学院)of USTC is actively hiring tenure-track faculties and postdocs. We provide competitive salary, sufficient funding and student supports, and good career opportunities. Please approach me if you are interested in joining USTC or working with me!
教育经历:
Sep 2007 - June 2011,Bachelor in Software Engineering,East China Normal University (ECNU),Shanghai, China
July 2011 - April 2016,Ph.D. in Computer Science,National University of Singapore (NUS), Singapore
研究经历:
April 2019 - Present,Professor, University of Science and Technology of China
May 2016 - March 2019,Postdoc Research Fellow, National University of Singapore
June 2015 - Sep 2015,Research Intern, Google Research (Mountain View)
June 2014 - Sep 2014,Software Engineering Intern, Google (New York)
Sep 2010 - Dec 2010, Software Engineering Intern, Microsoft (Shanghai)
主要论著:
[01]Wang X, He X, Wang M, et al. Neural Graph Collaborative Filtering[C].SIGIR 2019.
[02]Xin X, He X, Zhang Y, et al. Relational Collaborative Filtering: Modeling Multiple Item Relations for Recommendation[C]. SIGIR 2019.
[03]Yang X, He X, Wang X, et al. Interpretable Fashion Matching with Rich Attributes[C]. SIGIR 2019.
[04]Wang X, He X, Cao Y, et al. KGAT: Knowledge Graph Attention Network for Recommendation[C]. KDD 2019
[05]Hu H, He X. Sets2Sets: Learning from Sequential Sets with Neural Networks[C].KDD 2019.
[06]Chen Y, Chen B, He X, et al. Lambda Opt: Learn to Regularize Recommender Models in Finer Levels[C]. KDD 2019.
[07]Ding D, Zhang M, Pan X, et al. Modeling Extreme Events in Time Series Prediction[C]. KDD 2019.
[08]Ding J, Quan Y, He X, et al.Reinforced Negative Sampling for Recommendation with Exposure Data[C].IJCAI 2019.
[09]Xin X, Chen B, He X, et al. CFM: Convolutional Factorization Machines for Context-Aware Recommendation[C].IJCAI 2019
[10]Chen L, Liu Y, He X, et al. Matching User with Item Set: Collaborative Bundle Recommendation with Attention Network[C].IJCAI 2019.
[11]Feng F, Chen H, He X, et al.EnhancingStock Movement Prediction with Adversarial Training[C]. IJCAI 2019.
[12]Chen W, Gu Y, Ren Z, et al. Semi-supervised User Profiling with Heterogeneous Graph Attention Networks[C]. IJCAI 2019.
[13]Cao Y, Wang X, He X, et al. Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences[C]//WWW 2019: 151-161.
[14]Gao C, Chen X, Feng F, et al. Cross-domain Recommendation Without Sharing User-relevant Data[C]//WWW 2019: 491-502.
[15]Wang X, Wang D, Xu C, et al. Explainable Reasoning over Knowledge Graphsfor Recommendation[C]. AAAI 2019.
[16]Li X, Song J, Gao L, et al. Beyond RNNs: Positional Self-Attention with Co-Attention for Video Question Answering[C]. AAAI 2019.
[17]Yuan F, Karatzoglou A, Arapakis I, et al. A Simple Convolutional Generative Network for Next Item Recommendation[C]//WSDM 2019: 582-590.
[18]Gao C, He X, Gan D, et al. Neural Multi-Task Recommendation from Multi-Behavior Data[C]//ICDE (Short).2019.
[19]Feng F, He X, Tang J, et al. Graph Adversarial Training: DynamicallyRegularizing Based on Graph Structure[J]. IEEE Transactions on Knowledge andData Engineering (TKDE, under submission).
[20]Gao M, He X, Chen L, et al. Learning Vertex Representations for Bipartite Networks[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE, undersubmission).
[21]Gao X, Feng F, He X, et al. Visually-aware Collaborative Food Recommendation[J]. IEEE Transactions on Multimedia (TMM, under submission).
[22]Hong R, Liu D, Mo X, et al. Learning to Compose and Reason with LanguageTree Structures for Visual Grounding[J]. IEEE transactions on pattern analysisand machine intelligence 2019.
[23]Feng F, He X, Wang X, et al. Temporal Relational Ranking for Stock Prediction[J].ACM Transactions on Information Systems (TOIS) 2019, 37(2): 27.
[24]Guan X, Cheng Z, He X, et al. Attentive Aspect Modeling for Review-aware Recommendation[J]. ACM Transactions on Information Systems (TOIS) 2019, 37(3):28.
[25]He X, Tang J, Du X, et al.Fast Matrix Factorization with Non-Uniform Weights on Missing Data[J]. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 2019
[26]Tang J, Du X, He X, et al. Adversarial training towards robust multimedia recommender system[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2019.
[27]Ding J, Yu G, He X, et al. SamplerDesign for Bayesian Personalized Ranking by Leveraging View Data[J]. IEEETransactions on Knowledge and Data Engineering (TKDE, Major Revision) 2019
[28]Liu Y, Li Z, Zhou C, et al. Generative adversarial active learning for unsupervised outlier detection[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2019.
[29]Xue F, He X, Wang X, et al. Deep Item-based Collaborative Filtering for Top-N Recommendation[J].ACM Transactions on Information Systems (TOIS) 2019,37(3): 33.
[30]He X, He Z, Du X, et al. Adversarial personalized ranking for recommendation[C]//SIGIR 2018: 355-364.
[31]Gao M, Chen L, He X, et al. BiNE: Bipartite Network Embedding[C]//SIGIR 2018: 715-724.
[32]Cao D, He X, Miao L, et al. Attentive group recommendation[C]//SIGIR 2018: 645-654.
[33]Luo X, Nie L, He X, et al. Fast Scalable Supervised Hashing[C]//SIGIR 2018: 735-744.
[34]Song X, Wang X, Nie L, et al. A Personal Privacy Preserving Framework: ILet You Know Who Can See What[C]//SIGIR 2018: 295-304.
[35]Liu M, Wang X, Nie L, et al. Attentive moment retrieval in videos[C]// SIGIR 2018: 15-24.
[36]Liao L, Ma Y, He X, et al. Knowledge-aware Multimodal Dialogue Systems[C]//MM 2018:801-809.(Best Paper Final List)
[37]Gelli F, Uricchio T, He X, et al. Beyond the Product: Discovering Image Posts for Brands in Social Media[C]//MM 2018.
[38]Liao L, He X, Zhao B, et al. Interpretable multimodal retrieval for fashion products[C]//MM 2018
[39]Yu W, Zhang H, He X, et al. Aesthetic-based clothing recommendation[C]//WWW 2018(Best Paper Award Honorable Mention)
[40]Wang X, He X, Feng F, et al. Tem: Tree-enhanced embedding model for explainable recommendation[C]//WWW 2018 : 1543-1552.
[41]Feng F, He X, Liu Y, et al. Learning on partial-order hypergraphs[C]//WWW 2018:1523-1532.
[42]Ding J, Feng F, He X, et al. An improved sampler for bayesian personalized ranking by leveraging view data[C]//WWW 2018 (Poster): 13-14.(Best Poster Award)
[43]Yuan F, Xin X, He X, et al. fBGD: Learning embeddings from positive unlabeled data with BGD[C]. UAI 2018.
[44]He X, Du X, Wang X, et al. Outer product-based neural collaborative filtering[C].IJCAI 2018.
[45]Liu H, He X, Feng F, et al. Discrete factorization machines for fastfeature-based recommendation[C].IJCAI 2018.
[46]Ding J, Yu G, He X, et al. Improving Implicit Recommender Systems with View Data[C]//IJCAI 2018: 3343-3349.
[47]Cheng Z, Ding Y, He X, et al. A^ 3NCF: An Adaptive Aspect Attention Modelfor Rating Prediction[C]//IJCAI 2018: 3748-3754.
[48]Shen T, Jia J, Shen G, et al. Cross-Domain Depression Detection via Harvesting Social Media[C]//IJCAI 2018: 1611-1617.
[49]Xin X, Yuan F, He X, et al. AllVec: Learning Word Representations Without Negative Sampling[C]. ACL 2018.
[50]Lei W, Jin X, Kan M Y, et al. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures[C]//ACL 2018: 1437-1447.
[51]Liao L, He X, Zhang H, et al. Attributed social network embedding[J].IEEE Transactions on Knowledge and Data Engineering (TKDE) 2018, 30(12): 2257-2270.
[52]Zhang D, Guo L, He X, et al. A graph-theoretic fusion framework for unsupervised entity resolution[C]//2018 IEEE 34th International Conference onData Engineering (ICDE). IEEE, 2018: 713-724.
[53]He X, He Z, Song J, et al. NAIS: Neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2018, 30(12): 2354-2366.
[54]Chen J, He X, Song X, et al. Venue prediction for social images by exploiting rich temporal patterns in lbsns[C]/MMM 2018 (Poster): 327-339.
[55]Gao Z, Wang D, He X, et al. Group-pair convolutional neural networks formulti-view based 3d object retrieval[C]//AAAI 2018.
[56]He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]/ SIGIR 2017: 355-364.
[57]Wang X, He X, Nie L, et al. Item silk road: Recommending items from information domains to social users[C]// SIGIR 2017: 185-194.
[58]Chen J, Zhang H, He X, et al.Attentive Collaborative Filtering: Multimedia Recommendation with Feature- and Item-levelAttention[C]. SIGIR 2017.
[59]Cao D, Nie L, He X, et al. Embedding factorization models for jointly recommending items and user generated lists[C]//SIGIR 2017: 585-594.
[60]Gelli F, He X, Chen T, et al. How personality affects our likes: Towardsa better understanding of actionable images[C]//MM 2017: 1828-1837.
[61]Nie L, Wang X, Zhang J, et al. Enhancing micro-video understanding byharnessing external sounds[C]//MM 2017: 1192-1200.
[62]Xu D, Zhao Z, Xiao J, et al. Video question answering via gradually refined attention over appearance and motion[C]//MM 2017: 1645-1653.
[63]Liu Z, Cheng L, Liu A, et al. Multiview and multimodal pervasive indoor localization[C]//MM 2017: 109-117.
[64]Zhu L, Huang Z, Liu X, et al. Discrete multi-modal hashing with canonicalviews for robust mobile landmark search[J].IEEE Transactions on Multimedia(TMM) 2017, 19(9): 2066-2079.
[65]Xiao J, Ye H, He X, et al. Attentional factorization machines: Learningthe weight of feature interactions via attention networks[C].IJCAI 2017.
[66]Liao L, He X, Ren Z, et al. Representativeness-aware Aspect Analysis for Brand Monitoring in Social Media[C]//IJCAI. 2017: 310-316.
[67]Lei W, Wang X, Liu M, et al. SWIM: A Simple Word Interaction Model for Implicit Discourse Relation Recognition[C]//IJCAI. 2017: 4026-4032.
[68]He X, Liao L, Zhang H, et al. Neural collaborativefiltering[C]//WWW 2017:173-182.
[69]Bayer I, He X, Kanagal B, et al. A generic coordinate descent frame workfor learning from implicit feedback[C]//WWW 2017: 1341-1350.
[70]He X, Gao M, Kan M Y, et al. Birank: Towards ranking on bipartite graphs[J]. IEEE Transactions on Knowledge and Data Engineering,(TKDE) 2016, 29(1):57-71.
[71]Cao D, He X, Nie L, et al. Cross-platform app recommendation by jointly modeling ratings and texts[J]. ACM Transactions on Information Systems (TOIS) 2017, 35(4): 37.
[72]Cao D, Nie L, He X, et al. Version-sensitive mobile Apprecommendation[J]. Information Sciences, 2017, 381: 161-175.
[73]He X, Zhang H, Kan M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]//SIGIR 2016: 549-558.
[74]Zhang H, Shen F, Liu W, et al. Discrete collaborative filtering[C]//SIGIR 2016: 325-334.(Best Paper Award Honorable Mention)
[75]Chen T, He X, Kan M Y. Context-aware image tweet modelling and recommendation[C]//MM 2016: 1018-1027.
[76]Zhang J, Nie L, Wang X, et al. Shorter-is-better: Venue category estimation from micro-video[C]//MM 2016: 1415-1424.
[77]He X, Chen T, Kan M Y, et al. Trirank: Review-aware explainable recommendation by modeling aspects[C]//CIKM 2015:1661-1670.
[78]Chen T, SalahEldeen H M, He X, et al. VELDA: Relating an Image Tweet's Text and Images[C]//AAAI. 2015: 30-36.
[79]He X, Gao M, Kan M Y, et al. Predicting the popularity of web 2.0 itemsbased on user comments[C]//SIGIR 2014:233-242.
[80]He X, Kan M Y, Xie P, et al. Comment-based multi-view clustering of web2.0 items[C]//WWW 2014: 771-782.
[81]Jin Y, Kan M Y, Ng J P, et al. Mining scientific terms and their definitions: A study of the ACL anthology[C]//EMNLP 2013: 780-790.
[82]Gao M, He X, Jin C, et al. Recording how-provenance on probabilistic databases[C]//APWEB 2010:205-211.
[83]Xu J, He X, Li H. Deep learning for matching in search and recommendation[C]//SIGIR 2018: 1365-1368.
[84]Ren Z, He X, Yin D, et al. InformationDiscovery in E-commerce[C].SIGIR 2018
[85]Xu J, He X, Li H. Deep learning for matching in search and recommendation[C]//SIGIR 2018: 1365-1368.
[86]He X, Zhang H, Chua T S. Recommendation Technologies for Multimedia Content[C]//ICMR. 2018: 8.
相关话题/中国科学技术大学 数据
中国科学技术大学大数据学院导师教师师资介绍简介-李厚强
李厚强电话:**E-Mail:lihq@ustc.edu.cn个人主页:http://staff.ustc.edu.cn/~lihq主要研究方向:图像视频编码与通信、多媒体信息检索、计算机视觉与模式识别、图象视频处理与分析李厚强,男,中国科学技术大学电子工程与信息科学系教授、博士生导师,国家“*** ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-孔旭
孔旭电话:**电子邮件:xkong@ustc.edu.cn个人主页:http://staff.ustc.edu.cn/~xkong办公室:东区基础科学实验大楼18-014主要研究方向:星系物理特性、星族合成方法、星系的形成和演化、宇宙学 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-李智军
李智军电话:**E-Mail:zjli@ieee.org实验室主页:http://wearablerobotics.ustc.edu.cn/个人主页:http://www.ieee-nrs.org/index.php/zhijun-li/实验室地址:中国科学技术大学西校区图书馆1503/科技实验楼西 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-李向阳
李向阳电 话:(0551)**E-Mail:xiangyangli@ustc.edu.cn个人主页:http://staff.ustc.edu.cn/~xiangyangli主要研究方向:无线网络和移动计算、物联网、网络安全、数据隐私、社会网络、算法分析设计。李向阳博士(英文用名Xiang-Yang ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-刘庆峰
刘庆峰电话:(0551)**E-mail:jundu@ustc.edu.cn(由信息学院杜俊副教授代培养)刘庆峰,男,1973年2月出生于安徽泾县,科大讯飞董事长、安徽信息工程学院董事长。1990年考入中国科学技术大学,1998年获“通信与电子系统”专业硕士学位,2003年7月获“信号与信息处理”专 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-连德富
连德富电 话:E-mail:liandefu@ustc.edu.cn个人主页:http://staff.ustc.edu.cn/~liandefu连德富,男,1985年11月生,博士,特任研究员。2014年获得中国科学技术大学计算机应用技术专业博士学位,中科大-微软联合培养。主要研究方向是时空数据、 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-刘利刚
刘利刚电话:+86-E-Mail:lgliu@ustc.edu.cn个人主页:http://staff.ustc.edu.cn/~lgliu/主要研究方向:几何建模、3D打印中的几何优化、几何中的压缩感知与稀疏优化、高维几何中的形态分析、图像和视频处理中国科学技术大学数学科学学院教授。1996获得浙 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-刘海燕
刘海燕Tel:86-Fax:86-E-Mail:http://hyliu@ustc.edu.cn实验室主页:http://biocomp.ustc.edu.cn/个人简历:刘海燕,教授,博士生导师。1990年本科博士毕业于中国科学技术大学生物系。1996年博士毕业于中国科学技术大学,获郭沫若奖。19 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-刘桂琳
刘桂琳邮编:230026电话:个人主页:http://staff.ustc.edu.cn/~glliu实验室介绍:http://staff.ustc.edu.cn/~glliu主要研究方向:星系天文学、活动星系、恒星形成个人简历:2004年毕业于中科大天文系,2011年于美国马萨诸塞大学获得博士学位 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学大数据学院导师教师师资介绍简介-刘淇
刘 淇电 话:E-mail:qiliuql@ustc.edu.cn个人主页:http://staff.ustc.edu.cn/~qiliuql/主要研究方向:数据挖掘与知识发现、机器学习方法及其应用刘淇,男,特任教授,博士生导师,中国计算机学会(CCF)大数据专家委员会委员、中国人工智能学会(CAA ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24