删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
温州大学数理学院导师教师师资介绍简介-李 媛
/2021-04-17
李媛 (博士, 副教授)
温州大学数理学院浙江温州, 325035
B math.liyuan@gmail.com, liyuan@wzu.edu.cn
2004 年 9 月
-2009 年 12 月
2000 年 9 月
-2004 年 7 月
教育背景
博士研究生, 西安交通大学理学院, 理学博士 (硕博连读).
$科, 山西大学数学科学学院, 理学学士.
经历
2011 年 11 月
–现在
2010 年 1 月
–2011 年 10 月
2010 年 1 月
–至今
工作经历
副教授, 硕士生导fi, 温州大学数理学院.
?fi, 温州大学数学与信息科学学院.
教学经历
?授?程.
○ 高等数学 ○ 常微分方程
○ 微分方程基础 ○ 概率论与数理统计
研究方向
1 偏微分方程数值解
2 Navier-Stokes 方程的数值算法
3 有限元方法
1/4
2018 年 1 月
–2020 年 12 月
2014 年 1 月
–2016 年 12 月
2011 年 1 月
–2013 年 12 月
主持科研项目
fl????3fl?学方程‰具有??fi?式的高?数值算法研究, 浙江省自然科学基金 (一般项目), (LY18A010021).
主持
大??数fl Navier-Stokes ??分fl等问题§?数值方法的研究, 浙江省自然科学基金 (一般项目), (LY14A010020).
主持
fl????性3fl中?分fl等问题高性?算法的研究, 国家自然科学基金 (青年项目), (11001205).
主持
论文
学术论文
[1] Rong An, Chao Zhang, Yuan Li, Temporal convergence analysis of an energy preserv- ing
projection method for a coupled magnetohydrodynamics equations, Journal of Computational and
Applied Mathematics, 386(2021), 113236.
[2] Yuan Li, Chunfang Zhai, Unconditionally optimal convergence analysis of second-order BDF
Galerkin ?nite element scheme for a hybrid MHD system, Advances in Compu- tational Mathematics,
46(2020), Article number: 75
[3] Yuan Li, Xuelan Luo, Second-order semi-implicit Crank-Nicolson scheme for a coupled
magnetohydrodynamics system, Applied Numerical Mathematics, Vol. 145, pp.48- 68, 2019.
[4] Yuan Li, Yanjie Ma, Rong An, Decoupled, semi-implicit scheme for a coupled system arising in
magnetohydrodynamics problem, Applied Numerical Mathematics, Vol. 127, pp.142-163, 2018.
[5] Rong An, Yuan Li, Error analysis of ?rst-order projection method for time-dependent
magnetohydrodynamics equations, Applied Numerical Mathematics, Vol. 112, pp.167-181, 2017.
[6] Rong An, Yuan Li, Yuqing Zhang, Error estimates of two-level ?nite element method for
Smagorinsky model, Applied Mathematics and Computation, Vol. 274, pp.786- 800, 2016.
[7] An Liu, Yuan Li, Rong An, Two-level defect-correction method for steady Navier-Stokes
problem with friction boundary, Advances in Applied Mathematics and Mechanics, Vol. 8(6),
pp.932-952, 2016.
[8] Yuqing Zhang, Yuan Li, Rong An, Two-Level iteration penalty and variational mul- tiscale
method for steady incompressible ?ows, Journal of Applied Analysis and Computation, Vol. 6(3),
pp.607-627, 2016.
[9] Yuan Li, Rong An, Two-level variational multiscale ?nite element methods for
Navier–Stokes type variational inequality problem, Journal of Computational and Applied
Mathematics, Vol. 290, pp.656-669, 2015.
2/4
[10] Rong An, Yuan Li, Two-level penalty ?nite element methods for Navier-Stokes equa- tions
with nonlinear slip boundary conditions, International Journal of Numerical Analysis and
Modeling, Vol. 11(3), pp.608-624, 2014.
[11] 安荣, 李媛, 具有梯度限制的四阶障碍问题的增广 Lagrange 迭代方法, 计算数学, Vol. 35(1), pp.11-20, 2013.
[12] Yuan Li, Rong An, Two-level iteration penalty methods for Navier-Stokes equations with
friction boundary conditions. Abstract and Applied Analysis, Vol. 2013, Article ID 125139, 17
pages, 2013.
[13] Yuan Li, Rong An, Penalty ?nite element method for Navier-Stokes equations with nonlinear
slip boundary conditions. International Journal for Numerical Methods in Fluids, Vol. 69(3),
pp.550-566, 2012.
[14] Yuan Li, Kaitai Li, Global strong solution of two dimensional Navier-Stokes equations with
nonlinear slip boundary conditions, Journal of Mathematical Analysis and Applications, Vol.
393(1), pp.1-13, 2012.
[15] Yuan Li, Rong An, Semi-discrete stabilized ?nite element methods for Navier-Stokes
equations with nonlinear slip boundary conditions based on regularization procedure, Numerische
Mathematik, Vol. 117(1), pp.1-36, 2011.
[16] Yuan Li, Rong An, Two-level pressure projection ?nite element methods for Navier- Stokes
equations with nonlinear slip boundary conditions, Applied Numerical Math- ematics, Vol. 61(3),
pp.285-297, 2011.
[17] Yuan Li, Kaitai Li, Pressure projection stabilized ?nite element method for Stokes
problem with nonlinear slip boundary conditions, Journal of Computational and Applied
Mathematics, Vol. 235(12), pp.3673-3682, 2011.
[18] Yuan Li, Kaitai Li, Uzawa iteration method for Stokes type variational inequality of the
second kind, Acta Mathematicae Applicatae Sinica-English Series, Vol. 27(2), pp.303-316, 2011.
[19] Yuan Li, Kaitai Li, Existence of the solution to stationary Navier-Stokes equations with
nonlinear slip boundary conditions, Journal of Mathematical Analysis and Applications, Vol.
381(1), pp.1-9, 2011.
[20] Rong An, Yuan Li, Kaitai Li, Fundamental solution of rotating generalized Stokes problem
in R3, Acta Mathematicae Applicatae Sinica, English Series, Vol. 27(4), pp.761-768, 2011.
[21] Yuan Li, Kaitai Li, Operator splitting methods for the Navier-Stokes equations with
nonlinear slip boundary conditions, International Journal of Numerical Analysis and Modeling,
Vol. 7(4), pp.785-805, 2010.
[22] Yuan Li, Kaitai Li, Pressure projection stabilized ?nite element method for Navier- Stokes
equations with nonlinear slip boundary conditions,Computing, Vol. 87(3-4), pp.113-133, 2010.
[23] Yuan Li, Kaitai Li, Locally stabilized ?nite element method for Stokes problem with
nonlinear slip boundary conditions, Journal of Computational Mathematics, Vol. 28(6),
pp.826-836, 2010.
[24] Rong An, Kaitai Li, Yuan Li, Solvability of the 3D rotating Navier-Stokes equations coupled
with a 2D biharmonic problem with obstacles and gradient restriction, Applied Mathematical
Modelling, Vol. 33(6), pp.2897-2906, 2009.
[25] Rong An, Yuan Li, Kaitai Li, Solvability of Navier-Stokes equations with leak boundary
conditions. Acta Mathematicae Applicatae Sinica-English Series, Vol. 25(2),
pp.225-234,2009.
3/4
[26] Yuan Li, Kaitai Li, Penalty ?nite element method for Stokes problem with nonlinear slip
boundary conditions, Applied Mathematics and Computation, Vol. 204(1), pp.216-226, 2008.
[27] Rong An, Yuan Li, Kaitai Li, Finite element approximation for fourth-order nonlinear
problem in the plane, Applied Mathematics and Computation, Vol. 194(1), pp.143- 155, 2007.
[28] Yuan Li, Rong An, Kaitai Li, Some optimal error estimates of biharmonic problem using
conforming ?nite element, Applied Mathematics and Computation, Vol. 194(2), pp.298-308, 2007.
[29] 李媛, 安荣, 李开泰, 一个新 Pohozaev 恒等式及其在四阶拟线性椭圆方程中的应用,
西安交通大学学? (自然科学?), Vol. 41(10), pp.1245-1247, 2007.
指导硕士生
2016 级 马炎杰
2017 级 罗雪兰
2018 级 翟春芳
2019 级 崔雪微
2020 级 曹敏,李晨阳
4/4