删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

温州大学数理学院导师教师师资介绍简介-李 媛

/2021-04-17

李媛 (博士, 副教授) 温州大学数理学院浙江温州, 325035 B math.liyuan@gmail.com, liyuan@wzu.edu.cn 2004 年 9 月 -2009 年 12 月 2000 年 9 月 -2004 年 7 月 教育背景 博士研究生, 西安交通大学理学院, 理学博士 (硕博连读). $科, 山西大学数学科学学院, 理学学士. 经历 2011 年 11 月 –现在 2010 年 1 月 –2011 年 10 月 2010 年 1 月 –至今 工作经历 副教授, 硕士生导fi, 温州大学数理学院. ?fi, 温州大学数学与信息科学学院. 教学经历 ?授?程. ○ 高等数学 ○ 常微分方程 ○ 微分方程基础 ○ 概率论与数理统计 研究方向 1 偏微分方程数值解 2 Navier-Stokes 方程的数值算法 3 有限元方法 1/4 2018 年 1 月 –2020 年 12 月 2014 年 1 月 –2016 年 12 月 2011 年 1 月 –2013 年 12 月 主持科研项目 fl????3fl?学方程‰具有??fi?式的高?数值算法研究, 浙江省自然科学基金 (一般项目), (LY18A010021). 主持 大??数fl Navier-Stokes ??分fl等问题§?数值方法的研究, 浙江省自然科学基金 (一般项目), (LY14A010020). 主持 fl????性3fl中?分fl等问题高性?算法的研究, 国家自然科学基金 (青年项目), (11001205). 主持 论文 学术论文 [1] Rong An, Chao Zhang, Yuan Li, Temporal convergence analysis of an energy preserv- ing projection method for a coupled magnetohydrodynamics equations, Journal of Computational and Applied Mathematics, 386(2021), 113236. [2] Yuan Li, Chunfang Zhai, Unconditionally optimal convergence analysis of second-order BDF Galerkin ?nite element scheme for a hybrid MHD system, Advances in Compu- tational Mathematics, 46(2020), Article number: 75 [3] Yuan Li, Xuelan Luo, Second-order semi-implicit Crank-Nicolson scheme for a coupled magnetohydrodynamics system, Applied Numerical Mathematics, Vol. 145, pp.48- 68, 2019. [4] Yuan Li, Yanjie Ma, Rong An, Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem, Applied Numerical Mathematics, Vol. 127, pp.142-163, 2018. [5] Rong An, Yuan Li, Error analysis of ?rst-order projection method for time-dependent magnetohydrodynamics equations, Applied Numerical Mathematics, Vol. 112, pp.167-181, 2017. [6] Rong An, Yuan Li, Yuqing Zhang, Error estimates of two-level ?nite element method for Smagorinsky model, Applied Mathematics and Computation, Vol. 274, pp.786- 800, 2016. [7] An Liu, Yuan Li, Rong An, Two-level defect-correction method for steady Navier-Stokes problem with friction boundary, Advances in Applied Mathematics and Mechanics, Vol. 8(6), pp.932-952, 2016. [8] Yuqing Zhang, Yuan Li, Rong An, Two-Level iteration penalty and variational mul- tiscale method for steady incompressible ?ows, Journal of Applied Analysis and Computation, Vol. 6(3), pp.607-627, 2016. [9] Yuan Li, Rong An, Two-level variational multiscale ?nite element methods for Navier–Stokes type variational inequality problem, Journal of Computational and Applied Mathematics, Vol. 290, pp.656-669, 2015. 2/4 [10] Rong An, Yuan Li, Two-level penalty ?nite element methods for Navier-Stokes equa- tions with nonlinear slip boundary conditions, International Journal of Numerical Analysis and Modeling, Vol. 11(3), pp.608-624, 2014. [11] 安荣, 李媛, 具有梯度限制的四阶障碍问题的增广 Lagrange 迭代方法, 计算数学, Vol. 35(1), pp.11-20, 2013. [12] Yuan Li, Rong An, Two-level iteration penalty methods for Navier-Stokes equations with friction boundary conditions. Abstract and Applied Analysis, Vol. 2013, Article ID 125139, 17 pages, 2013. [13] Yuan Li, Rong An, Penalty ?nite element method for Navier-Stokes equations with nonlinear slip boundary conditions. International Journal for Numerical Methods in Fluids, Vol. 69(3), pp.550-566, 2012. [14] Yuan Li, Kaitai Li, Global strong solution of two dimensional Navier-Stokes equations with nonlinear slip boundary conditions, Journal of Mathematical Analysis and Applications, Vol. 393(1), pp.1-13, 2012. [15] Yuan Li, Rong An, Semi-discrete stabilized ?nite element methods for Navier-Stokes equations with nonlinear slip boundary conditions based on regularization procedure, Numerische Mathematik, Vol. 117(1), pp.1-36, 2011. [16] Yuan Li, Rong An, Two-level pressure projection ?nite element methods for Navier- Stokes equations with nonlinear slip boundary conditions, Applied Numerical Math- ematics, Vol. 61(3), pp.285-297, 2011. [17] Yuan Li, Kaitai Li, Pressure projection stabilized ?nite element method for Stokes problem with nonlinear slip boundary conditions, Journal of Computational and Applied Mathematics, Vol. 235(12), pp.3673-3682, 2011. [18] Yuan Li, Kaitai Li, Uzawa iteration method for Stokes type variational inequality of the second kind, Acta Mathematicae Applicatae Sinica-English Series, Vol. 27(2), pp.303-316, 2011. [19] Yuan Li, Kaitai Li, Existence of the solution to stationary Navier-Stokes equations with nonlinear slip boundary conditions, Journal of Mathematical Analysis and Applications, Vol. 381(1), pp.1-9, 2011. [20] Rong An, Yuan Li, Kaitai Li, Fundamental solution of rotating generalized Stokes problem in R3, Acta Mathematicae Applicatae Sinica, English Series, Vol. 27(4), pp.761-768, 2011. [21] Yuan Li, Kaitai Li, Operator splitting methods for the Navier-Stokes equations with nonlinear slip boundary conditions, International Journal of Numerical Analysis and Modeling, Vol. 7(4), pp.785-805, 2010. [22] Yuan Li, Kaitai Li, Pressure projection stabilized ?nite element method for Navier- Stokes equations with nonlinear slip boundary conditions,Computing, Vol. 87(3-4), pp.113-133, 2010. [23] Yuan Li, Kaitai Li, Locally stabilized ?nite element method for Stokes problem with nonlinear slip boundary conditions, Journal of Computational Mathematics, Vol. 28(6), pp.826-836, 2010. [24] Rong An, Kaitai Li, Yuan Li, Solvability of the 3D rotating Navier-Stokes equations coupled with a 2D biharmonic problem with obstacles and gradient restriction, Applied Mathematical Modelling, Vol. 33(6), pp.2897-2906, 2009. [25] Rong An, Yuan Li, Kaitai Li, Solvability of Navier-Stokes equations with leak boundary conditions. Acta Mathematicae Applicatae Sinica-English Series, Vol. 25(2), pp.225-234,2009. 3/4 [26] Yuan Li, Kaitai Li, Penalty ?nite element method for Stokes problem with nonlinear slip boundary conditions, Applied Mathematics and Computation, Vol. 204(1), pp.216-226, 2008. [27] Rong An, Yuan Li, Kaitai Li, Finite element approximation for fourth-order nonlinear problem in the plane, Applied Mathematics and Computation, Vol. 194(1), pp.143- 155, 2007. [28] Yuan Li, Rong An, Kaitai Li, Some optimal error estimates of biharmonic problem using conforming ?nite element, Applied Mathematics and Computation, Vol. 194(2), pp.298-308, 2007. [29] 李媛, 安荣, 李开泰, 一个新 Pohozaev 恒等式及其在四阶拟线性椭圆方程中的应用, 西安交通大学学? (自然科学?), Vol. 41(10), pp.1245-1247, 2007. 指导硕士生 2016 级 马炎杰 2017 级 罗雪兰 2018 级 翟春芳 2019 级 崔雪微 2020 级 曹敏,李晨阳 4/4
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19