删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
温州大学数理学院导师教师师资介绍简介-安 荣
/2021-04-17
安荣 (博士, 教授)
温州大学数理学院浙江温州, 325035
B anrong702@gmail.com, anrong@wzu.edu.cn
2005 年 3 月
-2008 年 7 月
2002 年 9 月
-2005 年 3 月
1998 年 9 月
-2002 年 7 月
教育背景
博士研究生, 西安交通大学理学院, 理学博士.硕士研究生, 西安交通大学理学院, 理学硕士.本科, 西安交通大学理学院, 理学学士.
经历
2019 年 1 月
–现在
2010 年 11 月
–2018 年 12 月
2008 年 7 月
–2010 年 10 月
工作经历
教授, 硕士生导师, 温州大学数理学院.
?教授, 硕士生导师, 温州大学数学与信息科学学院 (数电学院, 数理学院).
?师, 温州大学数学与信息科学学院.
学术交流经历
2009 年 7 月 ?问学者, 中国科学院数学与系统科学研究院计算数学研究所.
2015 年 3 月
-2015 年 9 月
?问学者, 香港城市大学.
2017 年 7 月 ?问学者, 香港城市大学.
2008 年 9 月
–至今
教学经历
?授?程.
○ 数学分析 (本科生) ○ 高等数学 (本科生)
○ 数学物理方程 (本科生) ○ 微分方程基础 (研究生)
1/6
○ 应用微分方程 (研究生) ○ 有限元方法 (研究生)
研究方向
1 非线性抛物方程的数值算法
2 Navier-Stokes 方程的理论和数值算法
3 有限元方法
荣誉和奖励
1 浙江省高校优秀青年教师资助计划 (2009) 2 温州市“551 人才工程”第三层次 (2010) 3 温州市“551 人才工程”第二层次 (2012)
4 浙江省中青年学科带头人 (2013)
5 温州大学新湖青年学者 (2018)
6 温州大学瓯江特聘教授 CII 类 (2020)
主持和参与项目
2018 年 1 月
–2021 年 12 月
2016 年 1 月
–2018 年 12 月
2012 年 1 月
–2013 年 12 月
2010 年 1 月
–2012 年 12 月
学术项目
??度fl??? Navier-Stokes 方程具有??fi?式的若干高?分?算法研究,
国家自然科学基金 (面上项目), (11771337).
主持
??度fl??? Navier-Stokes 方程数值方法的研究, 浙江省自然科学基金 (一般项目), (LY16A010017).
主持
Navier-Stokes ??分fl等问题的fl?fi?及其??理算法的研究, 浙江省自然科学基金 (一般项目), (LY12A01015).
主持
fi§障碍下fl????性流体数值方法的研究, 国家自然科学基金 (青年项目), (10901122).
主持
2/6
2012 年 –2015
年
教改项目
?数学物理方程?教学改革与??, 温州大学教学改革项目.
主持
论文
学术论文
[1] Rong An, Huadong Gao and Weiwei Sun, Optimal error analysis of Euler and
Crank–Nicolson projection ?nite di?erence schemes for Landau–Lifshitz equation, SIAM Journal
on Numerical Analysis, to appear.
[2] Rong An, Chao Zhang and Yuan Li, Temporal convergence analysis of an energy
preserving projection method for a coupled magnetohydrodynamics equations, Journal of Computational
and Applied Mathematics, 386(2021), 113236.
[3] Jingke Wu, Rong An and Yuan Li, Optimal H1 error analysis of a fractional step ?nite
element scheme for a hybrid MHD system, Journal of Applied Analysis and Computation, accepted,
2021.
[4] Bolin Chen and Rong An, Unconditionally optimal convergence analysis of second- order BDF
scheme for Landau-Lifshitz equation, Journal of Applied Analysis and Computation, accepted,
2021.
[5] Rong An, Error analysis of a new fractional-step method for the incompressible Navier-
Stokes equations with variable density, Journal of Scienti?c Computing, 84(2020), Article number:3.
[6] Rong An, Iteration penalty method for the incompressible Navier-Stokes equations with
variable density based on the arti?cial compressible method, Advances in Computa- tional
Mathematics, 46(2020), Article number:5, 29pages.
[7] Rong An, Error analysis of a time-splitting method for incompressible ?ows with vari- able
density, Applied Numerical Mathematics, 150(2020), pp.384-395.
[8] Rong An, Can Zhou and Jian Su, A new higher order fractional-step method for the
incompressible Navier-Stokes equations, Advances in Applied Mathematics and Mechanics ,
12(2020), pp.362-385.
[9] Rong An and Jian Su, Optimal error estimates of semi-implicit Galerkin method for
time-dependent nematic liquid crystal ?ows, Journal of Scienti?c Computing, 74(2018),
pp.979-1008.
[10] Yuan Li, Yanjie Ma and Rong An, Decoupled, semi-implicit scheme for a coupled
system arising in magnetohydrodynamics problem, Applied Numerical Mathematics, 127(2018),
pp.142-163.
[11] Rong An and Yuan Li, Error analysis of ?rst-order projection method for time-
dependent magnetohydrodynamics equations, Applied Numerical Mathematics, 112(2017),
pp.167-181.
[12] Rong An and Can Zhou, Error analysis of a fractional-step method for magneto-
hydrodynamics equations, Journal of Computational and Applied Mathematics, 313(2017),
pp.168-184.
3/6
[13] Hailong Qiu, Rong An, Liquan Mei and Changfeng Xue, Two-step algorithms for the stationary
incompressible Navier-Stokes equations with friction boundary conditions, Applied Numerical
Mathematics, 120(2017), pp.97-114.
[14] Caidi Zhao, Guowei Liu and Rong An, Global well-posedness and Pullback attractors for an
incompressible non-Newtonian ?uid with in?nite delays, Di?erential Equations and Dynamical Systems,
25(2017), pp.39-64.
[15] Rong An, Optimal error estimates of linearized Crank–Nicolson Galerkin method for
Landau–Lifshitz equation, Journal of Scienti?c Computing, 69(2016), pp.1-27.
[16] Rong An and Kaitai Li, Accuracy analysis of the boundary integral method for steady
Navier-Stokes equations around a rotating oObstacle, Acta Mathematicae Appli- catae Sinica,
English Series, 32(2016), pp.529-536.
[17] Rong An, Yuan Li and Yuqing Zhang, Error estimates of two-level ?nite element method for
Smagorinsky model, Applied Mathematics and Computation, 274(2016), pp.786-800.
[18] An Liu, Yuan Li and Rong An, Two-level defect-correction method for steady Navier- Stokes
problem with friction boundary, Advances in Applied Mathematics and Mechanics, 8(2016),
pp.932-952.
[19] Yuqing Zhang, Yuan Li and Rong An, Two-Level iteration penalty and variational
multiscale method for steady incompressible ?ows, Journal of Applied Analysis and Computation,
6(2016), pp.607-627.
[20] Rong An and Feng Shi, Two-Level iteration penalty methods for the incompressible ?ows,
Applied Mathematical Modelling, 39(2015), pp. 630-641.
[21] Rong An and Xuehai Huang, A compact C0 discontinuous Galerkin method for Kirch- ho?
plates, Numerical Methods for Partial Di?erential Equations, 31(2015), pp.1265-1287.
[22] Yuan Li and Rong An, Two-level variational multiscale ?nite element methods for
Navier–Stokes type variational inequality problem, Journal of Computational and Applied
Mathematics, 290(2015), pp.656-669.
[23] Rong An and Yuan Li, Two-level penalty ?nite element methods for Navier-Stokes e- quations
with nonlinear slip boundary conditions, International Journal of Numerical Analysis and Modeling,
11(2014), pp.608-624.
[24] Rong An, Comparisons of Stokes/Oseen/Newton iteration methods for Navier–Stokes equations
with friction boundary conditions, Applied Mathematical Modelling, 38(2014), pp.5535-5544.
[25] Rong An and Xian Wang, Discontinuous Galerkin ?nite element method for Plate contact
problem with frictional boundary conditions, Journal of Numerical Mathe- matics, 22(2014),
pp.177-190.
[26] Rong An and Xian Wang, Two-level Brezzi-Pitk?ranta discretization method based on Newton
iteration for Navier-Stokes equations with friction boundary conditions, Abstract and Applied
Analysis, 2014, Article ID 474160, 14 pages.
[27] Rong An and Xian Wang, Two-level Brezzi-Pitk?ranta stabilized ?nite element methods for the
incompressible ?ows, Abstract and Applied Analysis, 2014, Article ID 698354, 14 pages.
[28] Rong An and Hailong Qiu, Two-level Newton iteration methods for Navier-Stokes type
variational inequality problem, Advances in Applied Mathematics and Mechanics, 5(2013), pp.36-54.
4/6
[29] 安荣, 李媛, 具有梯度限制的四阶障碍问题的增广 Lagrange 迭代方法, 计算数学, 35(2013), pp.11-20.
[30] Yuan Li and Rong An, Two-level iteration penalty methods for Navier-Stokes equations with
friction boundary conditions. Abstract and Applied Analysis, 2013, Article ID 125139, 17 pages.
[31] Rong An and Kaitai Li, Approximation for Navier-Stokes equations around a rotating
obstacle, Applied Mathematics Letters, 25(2012), pp.209-214.
[32] Yuan Li and Rong An, Penalty ?nite element method for Navier-Stokes equations with
nonlinear slip boundary conditions. International Journal for Numerical Methods in Fluids,
69(2012), pp.550-566.
[33] Rong An and Xuehai Huang. Constrained C0 Finite element methods for biharmonic problem,
Abstract and Applied Analysis, 2012, Article ID 863125, 19pages.
[34] Yuan Li and Rong An, Semi-discrete stabilized ?nite element methods for Navier-Stokes
equations with nonlinear slip boundary conditions based on regularization procedure, Numerische
Mathematik, 117(2011), pp.1-36.
[35] Yuan Li and Rong An, Two-level pressure projection ?nite element methods for Navier- Stokes
equations with nonlinear slip boundary conditions, Applied Numerical Math- ematics, 61(2011),
pp.285-297.
[36] Rong An, Yuan Li and Kaitai Li, Fundamental solution of rotating generalized Stokes problem
in R3, Acta Mathematicae Applicatae Sinica, English Series, 27(2011), pp.761-768.
[37] Rong An and Kaitai Li, The boundary integral method for the steady rotating Navier- Stokes
equations in exterior domain (I): the existence of solution, Nonlinear Di?er- ential Equations and
Applications NoDEA, 17(2010), pp.95-108.
[38] Rong An and Kaitai Li, The boundary integral method for the linearized rotating
Navier-Stokes equations in exterior domain. Applied Mathematics and Computa- tion, 216(2010),
pp.2671-2678.
[39] 安荣, 李开泰, Plate Contact 问题的混合有限元逼近, 数学物理学?, 30(2010), pp.666-676.
[40] Rong An, Kaitai Li and Yuan Li, Solvability of the 3D rotating Navier-Stokes equations
coupled with a 2D biharmonic problem with obstacles and gradient restriction, Applied Mathematical
Modelling, Vol. 33(6), pp.2897-2906, 2009.
[41] Rong An, Yuan Li and Kaitai Li, Solvability of Navier-Stokes equations with leak bound- ary
conditions. Acta Mathematicae Applicatae Sinica-English Series, 25(2009), pp.225-234.
[42] Rong An, Discontinuous Galerkin Finite Element Method for the Fourth-Order Obstacle
Problem, Applied Mathematics and Computation, 209(2009), pp.351-355.
[43] 安荣, 张正策, 李媛, 李开泰, 具有指数增长的非线性 P-双调和问题解的存在性和非存在性, 数学年fi, 30(2009), pp.1-12.
[44] 安荣, 李开泰, 混合边界条件下非齐次定常 Navier-Stokes 方程弱解的存在性, 应用数学学?, 32(2009), pp.664-672.
[45] 安荣, 李开泰, 四阶障碍问题的稳定化混合有限元方法, 应用数学学?, 32(2009), pp.1068-1078.
5/6
[46] Rong An and Kaitai Li, Variational inequality for the rotating Navier-Stokes equa- tions
with subdi?erential boundary conditions, Computers and Mathematics with Applications, 55(2008),
pp.581-587.
[47] Kaitai Li andRong An, On the rotating Navier-Stokes equations with mixed boundary
conditions, Acta Mathematica Sinica-English Series, 24(2008), pp.577-598.
[48] Rong An, Yuan Li and Kaitai Li, Finite element approximation for fourth-order nonlinear
problem in the plane, Applied Mathematics and Computation, 194(2007), pp.143- 155.
[49] Yuan Li, Rong An and Kaitai Li, Some optimal error estimates of biharmonic prob- lem using
conforming ?nite element, Applied Mathematics and Computation, 194(2007), pp.298-308.
[50] 李媛, 安荣, 李开泰, 一个新 Pohozaev 恒等式及其在四阶拟线性椭圆方程中的应用,
西安交通大学学? (自然科学?), 41(2007), pp.1245-1247.
指导硕士生
2010 级 邱海龙
2011 级 王贤
2012 级 刘安, 张雨晴
2015 级 周粲
2016 级 龚欢
2017 级 张超
2018 级 武静珂, 陈柏霖
2019 级 傅天添, 赵果玫
2020 级 唐哲谦, 胡帅飞, 梅燕华
指导本科生竞赛
2017 年 美国大学生数学建模竞赛二等奖
2011, 2018 年 全国研究生数学建模竞赛三等奖
2019 年 第十届全国大学生数学竞赛决赛 (数学类) 三等奖
科研获奖
○ 王玮明, 赵才地 安荣, 等 种群动力学和流体力学中若干偏微分方程问题的定性和算法研究, 浙江省自然科学奖三等奖, 2015 年
6/6