删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

温州大学数理学院导师教师师资介绍简介-安 荣

/2021-04-17

安荣 (博士, 教授) 温州大学数理学院浙江温州, 325035 B anrong702@gmail.com, anrong@wzu.edu.cn 2005 年 3 月 -2008 年 7 月 2002 年 9 月 -2005 年 3 月 1998 年 9 月 -2002 年 7 月 教育背景 博士研究生, 西安交通大学理学院, 理学博士.硕士研究生, 西安交通大学理学院, 理学硕士.本科, 西安交通大学理学院, 理学学士. 经历 2019 年 1 月 –现在 2010 年 11 月 –2018 年 12 月 2008 年 7 月 –2010 年 10 月 工作经历 教授, 硕士生导师, 温州大学数理学院. ?教授, 硕士生导师, 温州大学数学与信息科学学院 (数电学院, 数理学院). ?师, 温州大学数学与信息科学学院. 学术交流经历 2009 年 7 月 ?问学者, 中国科学院数学与系统科学研究院计算数学研究所. 2015 年 3 月 -2015 年 9 月 ?问学者, 香港城市大学. 2017 年 7 月 ?问学者, 香港城市大学. 2008 年 9 月 –至今 教学经历 ?授?程. ○ 数学分析 (本科生) ○ 高等数学 (本科生) ○ 数学物理方程 (本科生) ○ 微分方程基础 (研究生) 1/6 ○ 应用微分方程 (研究生) ○ 有限元方法 (研究生) 研究方向 1 非线性抛物方程的数值算法 2 Navier-Stokes 方程的理论和数值算法 3 有限元方法 荣誉和奖励 1 浙江省高校优秀青年教师资助计划 (2009) 2 温州市“551 人才工程”第三层次 (2010) 3 温州市“551 人才工程”第二层次 (2012) 4 浙江省中青年学科带头人 (2013) 5 温州大学新湖青年学者 (2018) 6 温州大学瓯江特聘教授 CII 类 (2020) 主持和参与项目 2018 年 1 月 –2021 年 12 月 2016 年 1 月 –2018 年 12 月 2012 年 1 月 –2013 年 12 月 2010 年 1 月 –2012 年 12 月 学术项目 ??度fl??? Navier-Stokes 方程具有??fi?式的若干高?分?算法研究, 国家自然科学基金 (面上项目), (11771337). 主持 ??度fl??? Navier-Stokes 方程数值方法的研究, 浙江省自然科学基金 (一般项目), (LY16A010017). 主持 Navier-Stokes ??分fl等问题的fl?fi?及其??理算法的研究, 浙江省自然科学基金 (一般项目), (LY12A01015). 主持 fi§障碍下fl????性流体数值方法的研究, 国家自然科学基金 (青年项目), (10901122). 主持 2/6 2012 年 –2015 年 教改项目 ?数学物理方程?教学改革与??, 温州大学教学改革项目. 主持 论文 学术论文 [1] Rong An, Huadong Gao and Weiwei Sun, Optimal error analysis of Euler and Crank–Nicolson projection ?nite di?erence schemes for Landau–Lifshitz equation, SIAM Journal on Numerical Analysis, to appear. [2] Rong An, Chao Zhang and Yuan Li, Temporal convergence analysis of an energy preserving projection method for a coupled magnetohydrodynamics equations, Journal of Computational and Applied Mathematics, 386(2021), 113236. [3] Jingke Wu, Rong An and Yuan Li, Optimal H1 error analysis of a fractional step ?nite element scheme for a hybrid MHD system, Journal of Applied Analysis and Computation, accepted, 2021. [4] Bolin Chen and Rong An, Unconditionally optimal convergence analysis of second- order BDF scheme for Landau-Lifshitz equation, Journal of Applied Analysis and Computation, accepted, 2021. [5] Rong An, Error analysis of a new fractional-step method for the incompressible Navier- Stokes equations with variable density, Journal of Scienti?c Computing, 84(2020), Article number:3. [6] Rong An, Iteration penalty method for the incompressible Navier-Stokes equations with variable density based on the arti?cial compressible method, Advances in Computa- tional Mathematics, 46(2020), Article number:5, 29pages. [7] Rong An, Error analysis of a time-splitting method for incompressible ?ows with vari- able density, Applied Numerical Mathematics, 150(2020), pp.384-395. [8] Rong An, Can Zhou and Jian Su, A new higher order fractional-step method for the incompressible Navier-Stokes equations, Advances in Applied Mathematics and Mechanics , 12(2020), pp.362-385. [9] Rong An and Jian Su, Optimal error estimates of semi-implicit Galerkin method for time-dependent nematic liquid crystal ?ows, Journal of Scienti?c Computing, 74(2018), pp.979-1008. [10] Yuan Li, Yanjie Ma and Rong An, Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem, Applied Numerical Mathematics, 127(2018), pp.142-163. [11] Rong An and Yuan Li, Error analysis of ?rst-order projection method for time- dependent magnetohydrodynamics equations, Applied Numerical Mathematics, 112(2017), pp.167-181. [12] Rong An and Can Zhou, Error analysis of a fractional-step method for magneto- hydrodynamics equations, Journal of Computational and Applied Mathematics, 313(2017), pp.168-184. 3/6 [13] Hailong Qiu, Rong An, Liquan Mei and Changfeng Xue, Two-step algorithms for the stationary incompressible Navier-Stokes equations with friction boundary conditions, Applied Numerical Mathematics, 120(2017), pp.97-114. [14] Caidi Zhao, Guowei Liu and Rong An, Global well-posedness and Pullback attractors for an incompressible non-Newtonian ?uid with in?nite delays, Di?erential Equations and Dynamical Systems, 25(2017), pp.39-64. [15] Rong An, Optimal error estimates of linearized Crank–Nicolson Galerkin method for Landau–Lifshitz equation, Journal of Scienti?c Computing, 69(2016), pp.1-27. [16] Rong An and Kaitai Li, Accuracy analysis of the boundary integral method for steady Navier-Stokes equations around a rotating oObstacle, Acta Mathematicae Appli- catae Sinica, English Series, 32(2016), pp.529-536. [17] Rong An, Yuan Li and Yuqing Zhang, Error estimates of two-level ?nite element method for Smagorinsky model, Applied Mathematics and Computation, 274(2016), pp.786-800. [18] An Liu, Yuan Li and Rong An, Two-level defect-correction method for steady Navier- Stokes problem with friction boundary, Advances in Applied Mathematics and Mechanics, 8(2016), pp.932-952. [19] Yuqing Zhang, Yuan Li and Rong An, Two-Level iteration penalty and variational multiscale method for steady incompressible ?ows, Journal of Applied Analysis and Computation, 6(2016), pp.607-627. [20] Rong An and Feng Shi, Two-Level iteration penalty methods for the incompressible ?ows, Applied Mathematical Modelling, 39(2015), pp. 630-641. [21] Rong An and Xuehai Huang, A compact C0 discontinuous Galerkin method for Kirch- ho? plates, Numerical Methods for Partial Di?erential Equations, 31(2015), pp.1265-1287. [22] Yuan Li and Rong An, Two-level variational multiscale ?nite element methods for Navier–Stokes type variational inequality problem, Journal of Computational and Applied Mathematics, 290(2015), pp.656-669. [23] Rong An and Yuan Li, Two-level penalty ?nite element methods for Navier-Stokes e- quations with nonlinear slip boundary conditions, International Journal of Numerical Analysis and Modeling, 11(2014), pp.608-624. [24] Rong An, Comparisons of Stokes/Oseen/Newton iteration methods for Navier–Stokes equations with friction boundary conditions, Applied Mathematical Modelling, 38(2014), pp.5535-5544. [25] Rong An and Xian Wang, Discontinuous Galerkin ?nite element method for Plate contact problem with frictional boundary conditions, Journal of Numerical Mathe- matics, 22(2014), pp.177-190. [26] Rong An and Xian Wang, Two-level Brezzi-Pitk?ranta discretization method based on Newton iteration for Navier-Stokes equations with friction boundary conditions, Abstract and Applied Analysis, 2014, Article ID 474160, 14 pages. [27] Rong An and Xian Wang, Two-level Brezzi-Pitk?ranta stabilized ?nite element methods for the incompressible ?ows, Abstract and Applied Analysis, 2014, Article ID 698354, 14 pages. [28] Rong An and Hailong Qiu, Two-level Newton iteration methods for Navier-Stokes type variational inequality problem, Advances in Applied Mathematics and Mechanics, 5(2013), pp.36-54. 4/6 [29] 安荣, 李媛, 具有梯度限制的四阶障碍问题的增广 Lagrange 迭代方法, 计算数学, 35(2013), pp.11-20. [30] Yuan Li and Rong An, Two-level iteration penalty methods for Navier-Stokes equations with friction boundary conditions. Abstract and Applied Analysis, 2013, Article ID 125139, 17 pages. [31] Rong An and Kaitai Li, Approximation for Navier-Stokes equations around a rotating obstacle, Applied Mathematics Letters, 25(2012), pp.209-214. [32] Yuan Li and Rong An, Penalty ?nite element method for Navier-Stokes equations with nonlinear slip boundary conditions. International Journal for Numerical Methods in Fluids, 69(2012), pp.550-566. [33] Rong An and Xuehai Huang. Constrained C0 Finite element methods for biharmonic problem, Abstract and Applied Analysis, 2012, Article ID 863125, 19pages. [34] Yuan Li and Rong An, Semi-discrete stabilized ?nite element methods for Navier-Stokes equations with nonlinear slip boundary conditions based on regularization procedure, Numerische Mathematik, 117(2011), pp.1-36. [35] Yuan Li and Rong An, Two-level pressure projection ?nite element methods for Navier- Stokes equations with nonlinear slip boundary conditions, Applied Numerical Math- ematics, 61(2011), pp.285-297. [36] Rong An, Yuan Li and Kaitai Li, Fundamental solution of rotating generalized Stokes problem in R3, Acta Mathematicae Applicatae Sinica, English Series, 27(2011), pp.761-768. [37] Rong An and Kaitai Li, The boundary integral method for the steady rotating Navier- Stokes equations in exterior domain (I): the existence of solution, Nonlinear Di?er- ential Equations and Applications NoDEA, 17(2010), pp.95-108. [38] Rong An and Kaitai Li, The boundary integral method for the linearized rotating Navier-Stokes equations in exterior domain. Applied Mathematics and Computa- tion, 216(2010), pp.2671-2678. [39] 安荣, 李开泰, Plate Contact 问题的混合有限元逼近, 数学物理学?, 30(2010), pp.666-676. [40] Rong An, Kaitai Li and Yuan Li, Solvability of the 3D rotating Navier-Stokes equations coupled with a 2D biharmonic problem with obstacles and gradient restriction, Applied Mathematical Modelling, Vol. 33(6), pp.2897-2906, 2009. [41] Rong An, Yuan Li and Kaitai Li, Solvability of Navier-Stokes equations with leak bound- ary conditions. Acta Mathematicae Applicatae Sinica-English Series, 25(2009), pp.225-234. [42] Rong An, Discontinuous Galerkin Finite Element Method for the Fourth-Order Obstacle Problem, Applied Mathematics and Computation, 209(2009), pp.351-355. [43] 安荣, 张正策, 李媛, 李开泰, 具有指数增长的非线性 P-双调和问题解的存在性和非存在性, 数学年fi, 30(2009), pp.1-12. [44] 安荣, 李开泰, 混合边界条件下非齐次定常 Navier-Stokes 方程弱解的存在性, 应用数学学?, 32(2009), pp.664-672. [45] 安荣, 李开泰, 四阶障碍问题的稳定化混合有限元方法, 应用数学学?, 32(2009), pp.1068-1078. 5/6 [46] Rong An and Kaitai Li, Variational inequality for the rotating Navier-Stokes equa- tions with subdi?erential boundary conditions, Computers and Mathematics with Applications, 55(2008), pp.581-587. [47] Kaitai Li andRong An, On the rotating Navier-Stokes equations with mixed boundary conditions, Acta Mathematica Sinica-English Series, 24(2008), pp.577-598. [48] Rong An, Yuan Li and Kaitai Li, Finite element approximation for fourth-order nonlinear problem in the plane, Applied Mathematics and Computation, 194(2007), pp.143- 155. [49] Yuan Li, Rong An and Kaitai Li, Some optimal error estimates of biharmonic prob- lem using conforming ?nite element, Applied Mathematics and Computation, 194(2007), pp.298-308. [50] 李媛, 安荣, 李开泰, 一个新 Pohozaev 恒等式及其在四阶拟线性椭圆方程中的应用, 西安交通大学学? (自然科学?), 41(2007), pp.1245-1247. 指导硕士生 2010 级 邱海龙 2011 级 王贤 2012 级 刘安, 张雨晴 2015 级 周粲 2016 级 龚欢 2017 级 张超 2018 级 武静珂, 陈柏霖 2019 级 傅天添, 赵果玫 2020 级 唐哲谦, 胡帅飞, 梅燕华 指导本科生竞赛 2017 年 美国大学生数学建模竞赛二等奖 2011, 2018 年 全国研究生数学建模竞赛三等奖 2019 年 第十届全国大学生数学竞赛决赛 (数学类) 三等奖 科研获奖 ○ 王玮明, 赵才地 安荣, 等 种群动力学和流体力学中若干偏微分方程问题的定性和算法研究, 浙江省自然科学奖三等奖, 2015 年 6/6
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19