删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

昆明理工大学理学院导师教师师资介绍简介-李文杰

本站小编 Free考研考试/2021-11-07



李文杰,男,汉族 ,党员,博士,讲师

Email: forliwenjie2008@163.com
2015.09--2020.06, 湖南大学,数学与计量经济学院,博士
2018.10--2019.11, 悉尼科技大学,机械工程学院,联合培养博士;
2011.09--2014.09, 云南师范大学,数学学院,硕士;
2007.09–2011.07,湖北师范学院,数学与统计学院,学士;
高等数学A(2)
时滞微分方程、反应扩散微分方程、 脉冲微分方程理论与生物数学模型的定性理论与应用等领域的科学研究
承担科研项目及完成情况:
1、国家公派研究生项目: 分片光滑动力系统的控制与分叉(0), 主持.
2、国家自然科学基金: 右端分片连续微分系统的定性研究(**),参与.
[1]李文杰, 化存才(*), 何伟全,等. 网络舆情事件的灰色预测模型及案例分析. 情报科学, 2013(12):53-58.
[2]李文杰, 化存才(*), 何伟全,等. 网络舆情信息的综合评价指标体系构建与模糊评判模型. 情报科学,2015, 033(009):93-99.
[3]李文杰,化存才(*),何伟全,网络舆情热点事件可控性与筛选的数学模型分析.情报科学,2016 34(6):37-42.
[4]Wenjie Li(*), Lihong Huang and Jinchen Ji. Periodic solution and its stability of a delayed Beddington--DeAngelis type predator--prey systemwith discontinuous control strategy. Mathematical Methods in the Applied Sciences, 42.13 (2019): 4498-4515. (Web of Science高被引)
[5 ]Wenjie Li, Lihong Huang(*) and Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete & Continuous Dynamical Systems--B, 25.7, (2020) : 2639-2664.
[6 ]Wenjie Li(*), Jinchen Ji, Lihong Huang and Jiafu Wang. Bifurcations and dynamics of a plant disease system under non-smooth control strategy. Nonlinear Dynamics, 99.1(2020 ): 3351-3371.
[7]Wenjie Li,Jinchen Ji and Lihong Huang(*). Global dynamic behavior of a predator-prey model under ratio-dependent state impulsive control. Applied Mathematical Modelling, 77(2020):1842-1859.
[8]Wenjie Li, Lihong. Huang(*), Zhenyuan. Guo, J. Ji. Global dynamic behavior of a plant disease model with ratio dependent impulsive control strategy. Mathematics and Computers in Simulation.177.11,(2020): 120-139.
[9 ]Wenjie Li(*), Jinchen Ji and Lihong Huang. Dynamics of a controlled discontinuous computer worm system.Proceedings of the American Mathematical Society.148(2020)4389-4403.
[10]T. Chen, L.Huang, W. Huang, Wenjie Li. Center conditions and local bifurcation of critical periods in a switching Z2. Chaos, Solitons and Fractals, (2017) 105: 157--168.

相关话题/理学院 昆明理工大学