\r胡春明1, 2,魏石峰2,刘 娜1,宋玺娟1,米 雪\r2\r
\r
AuthorsHTML:\r胡春明1, 2,魏石峰2,刘 娜1,宋玺娟1,米 雪\r2\r
\r
AuthorsListE:\rHu Chunming1, 2,Wei Shifeng2,Liu Na1,Song Xijuan1,Mi Xue\r2\r
\r
AuthorsHTMLE:\rHu Chunming1, 2,Wei Shifeng2,Liu Na1,Song Xijuan1,Mi Xue\r2\r
\r
Unit:\r\r1. 天津大学内燃机研究所,天津 300072;\r
\r\r2. 天津大学机械工程学院,天津 300350\r
\r
\r
Unit_EngLish:\r1. Tianjin Internal Combustion Engine Research Institute,Tianjin University,Tianjin 300072,China;
2. School of Mechanical Engineering,Tianjin University,Tianjin 300350,China\r
\r
Abstract_Chinese:\r\r针对无人直升机发动机恒转速控制问题,提出了一种油门\r/\r点火提前角双变量协同调节的恒转速滑模控制策略.发动机输出扭矩控制是恒转速控制问题关键的一环,而油门开度和点火提前角作为调节发动机输出扭矩的两个变量具有不同的特点.油门调节虽然调节范围宽,但是响应较慢,易受时滞效应的影响而产生超调现象;点火提前角响应较快,但是调节范围有限.将二者的优点结合起来实现协同控制,可以进一步加强恒转速控制效果.为实现此目的,对发动机进行了数学建模,并基于该模型和滑模控制设计了协同控制策略.该策略包括点火提前角优先调节的主逻辑和点火提前角回归逻辑.最终通过仿真和试验验证了控制策略的效果.仿真结果显示:负载突变时,双变量协同滑模控制器相较于传统\rPID\r控制器,转速误差减小\r61\r%\r;同样基于滑模控制,双变量协同控制相较于双变量分离控制,转速误差减小\r21.4\r%\r;存在负载扭矩干扰或进气压力波动时,双变量协同滑模控制的转速稳定性也优于其他两种控制方式;整机系留试验中,双变量协同滑模控制的转速波动范围比双变量分离滑模控制小\r24\r%\r,比传统\rPID\r控制小\r62\r%\r.经过多次系留试验观测,使用双变量协同滑模控制,可使转速波动范围在±\r70r/min\r以内,控制误差在\r2\r%\r以内,能够满足无人直升机飞行稳定性的要求.\r\r
\r
Abstract_English:\r\rThe constant speed control of unmanned helicopter engines is important\r.\rTo address this issue\r,\ra bivariate coordinated sliding mode constant speed controller is proposed\r.\rIn this study\r,\rbivariate refers to throttle opening and ignition advance angle\r.\rNotably\r,\rthrottle opening and ignition advance angle\r,\ras two important variables for adjusting engine torque\r,\rhave different characteristics\r.\rThrottle opening has a wide adjustment range but a slow responsiveness\r,\rwhich makes it susceptible to overshoot by the effects of time delay\r.\rBy contrast\r,\rignition advance angle has a narrow adjustment range but a fast responsiveness\r.\rIf the advantages of these two variables are combined\r,\rthen the constant speed control effect could be further enhanced\r.\rFor this purpose\r,\rthe engine was mathematically modeled\r.\rOn the basis of the model of sliding mode control\r,\ra bivariate coordinated control strategy was designed\r.\rThe strategy includes a master logic\r,\rspark advance angle priority adjustment based on sliding mode\r,\rand spark advance angle regression logic\r.\rFinally\r,\rthe effect of the control strategy was verified by simulation and experiment\r.\rThe simulation results showed that\r,\rwhen the load changes abruptly\r,\rthe bivariate coordinated sliding mode controller reduces the speed error by 61\r%\r compared with the traditional PID controller\r.\rFurthermore\r,\ron the basis of sliding mode control\r,\rthe bivariate coordinated controller reduces the speed error by 21.4\r%\r compared with the bivariate separated controller\r.\rMoreover\r,\rwhen the load and intake disturbance is simulated\r,\rthe proposed controller has better anti-interference capability than the two other controllers\r.\rFinally\r,\rthe results of the helicopter mooring experiment showed that the speed fluctuation range of the bivariate coordinated sliding mode controller is 24\r%\r smaller than that of the bivariate separated sliding mode controller and 62\r%\r smaller than that of the traditional PID controller\r.\rThe results of multiple experiments showed that the speed fluctuation range is within \r±\r70r/min using the bivariate coordinated sliding mode controller\r.\rThe error is within 2\r%\r,\rwhich satisfies the flight stability requirements for unmanned helicopters\r.\r\r
\r
Keyword_Chinese:双变量协同调节;滑模控制;发动机数学模型;恒转速控制;无人直升机\r
Keywords_English:bivariate coordinated regulation;sliding mode control;mathematical model of engine;constant speed control;unmanned helicopter\r
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6452
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
双变量协同的无人直升机发动机恒转速滑模控制\r\n\t\t
本站小编 Free考研考试/2022-01-16
相关话题/控制 转速
撞击位置与风扇转速对鸟撞过程的影响\r\n\t\t
张俊红1,2,刘志远1,戴胡伟1,RezaHedayati3,袁一1,张桂昌4AuthorsHTML:张俊红1,2,刘志远1,戴胡伟1,RezaHedayati3,袁一1,张桂昌4AuthorsListE:ZhangJunhong1,2,LiuZhiyuan1,D ...天津大学科研学术 本站小编 Free考研考试 2022-01-16实时多目标权重弯道跟随预测控制
章军辉1,2,3,李庆1,2,陈大鹏1,2,3AuthorsHTML:章军辉1,2,3,李庆1,2,陈大鹏1,2,3AuthorsListE:ZhangJunhui1,2,3,LiQing1,2,ChenDapeng1,2,3AuthorsHTMLE:ZhangJunhui1,2,3,LiQing1 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16智能振动碾压机的自抗扰循迹控制方法
谢辉,赵龙同,阮迪望AuthorsHTML:谢辉,赵龙同,阮迪望AuthorsListE:XieHui,ZhaoLongtong,RuanDiwangAuthorsHTMLE:XieHui,ZhaoLongtong,RuanDiwangUnit:天津大学机械工程学院,天津300072Unit_Eng ...天津大学科研学术 本站小编 Free考研考试 2022-01-16一种滑模控制新型幂次趋近律的设计与分析
张国山,李现磊AuthorsHTML:张国山,李现磊AuthorsListE:ZhangGuoshan,LiXianleiAuthorsHTMLE:ZhangGuoshan,LiXianleiUnit:天津大学电气自动化与信息工程学院Unit_EngLish:SchoolofElectricalan ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于手持导航器的协作机器人引导控制技术研究
洪鹰1,2,匡加伦1,2,肖聚亮1,2,王云鹏1,2,赵炜1,2,王健1,2,张阳阳1,2,孙誉博1,2AuthorsHTML:洪鹰1,2,匡加伦1,2,肖聚亮1,2,王云鹏1,2,赵炜1,2,王健1,2,张阳阳1,2,孙誉博1,2AuthorsListE:HongYing1,2,KuangJi ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于状态观测器的多无人机编队跟踪控制\t\t
窦立谦,杨闯,王丹丹,陈涛,秦新立AuthorsHTML:窦立谦,杨闯,王丹丹,陈涛,秦新立AuthorsListE:DouLiqian,YangChuang,WangDandan,ChenTao,QinXinliAuthorsHTMLE:DouLiqian, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于预测控制的无人驾驶车辆爆胎转向控制\r\n\t\t
胡超芳1,2,3,曹磊1,2,3,赵凌雪1,2,3,王娜3,4AuthorsHTML:胡超芳1,2,3,曹磊1,2,3,赵凌雪1,2,3,王娜3,4AuthorsListE:HuChaofang1,2,3,CaoLei1,2,3,ZhaoLingxue1,2,3, ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于在线辨识的机器人惯量前馈控制仿真研究\r\n\t\t
洪鹰1,徐世超1,肖聚亮1,王国栋1,张智涛2,刘宏业2,段文斌2,滕宗烨2AuthorsHTML:洪鹰1,徐世超1,肖聚亮1,王国栋1,张智涛2,刘宏业2,段文斌2,滕宗烨2AuthorsListE:HongYing1,XuShichao1,XiaoJulian ...天津大学科研学术 本站小编 Free考研考试 2022-01-16水下机器人-机械手系统自适应抗扰控制方法
李冀永,万磊,黄海,张国成,秦洪德AuthorsHTML:李冀永,万磊,黄海,张国成,秦洪德AuthorsListE:LiJiyong,WanLei,HuangHai,ZhangGuocheng,QinHongdeAuthorsHTMLE:LiJiyong,WanLei,HuangHai,Zhang ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于干扰观测器的分布式四旋翼编队跟踪控制
窦立谦,陈涛,毛奇AuthorsHTML:窦立谦,陈涛,毛奇AuthorsListE:DouLiqian,ChenTao,MaoQiAuthorsHTMLE:DouLiqian,ChenTao,MaoQiUnit:天津大学电气自动化与信息工程学院,天津300072Unit_EngLish:Schoo ...天津大学科研学术 本站小编 Free考研考试 2022-01-16