张军, 张治恒, 朱新山
AuthorsHTML:张军, 张治恒, 朱新山
AuthorsListE:Zhang Jun, Zhang Zhiheng, Zhu Xinshan
AuthorsHTMLE:Zhang Jun, Zhang Zhiheng, Zhu Xinshan
Unit:天津大学电气自动化与信息工程学院,天津 300072
Unit_EngLish:School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract_Chinese:基于二维直方图的图像分割算法存在明显误分, 且利用二维Renyi熵求解最佳阈值计算量过大.为解决这些问题, 提出基于极坐标系下二维直方图的图像分割算法.首先, 将图像各像素点表示在极坐标系中, 根据各点的极角区分噪声点和非噪声点; 然后对噪声点进行平滑处理, 处理之后图像各像素点都集中在极坐标系中极角为45°的极径附近.由于滤噪后各像素点的极角差别很小, 所以仅利用各点的极径信息即可进行分割阈值的选取, 由此将二维问题转化为一维问题, 以减少计算量.实验结果表明, 该算法分割效果良好, 尤其适用于受噪声污染较严重的图片, 而且与传统二维算法及其改进算法相比, 运行速度有很大提高.
Abstract_English:There is obvious wrong segmentation in the image segmentation algorithm which is based on the two-dimensional histogram,and the computational load of solving the optimal threshold by using two-dimensional Renyi entropy is too large. To solve these problems,an image segmentation algorithm based on two-dimensional histogram in polar coordinate system was proposed. Firstly,the pixels of the image were represented in polar coordinate system,and the noise points and non-noise points were distinguished according to their polar angles; then the noise points were smoothed. After this procedure,all the pixels of the image were concentrated around the polar axis with a polar angle of 45 degrees. Since the differences among the polar angles of these pixels are very small,the segmentation threshold can be selected by using the polar radius information of each point. Thus,the two-dimensional problem is converted into a one-dimensional problem to reduce the computational load. The experimental results show that the algorithm is effective in image segmentation,especially for images with serious noise pollution. Moreover,compared with the traditional two-dimensional algorithm and its improved algorithm,the running speed of this algorithm has been greatly improved.
Keyword_Chinese:图像分割; 最佳阈值; 极坐标系; 噪声点
Keywords_English:image segmentation; optimal threshold; polar coordinate system; noise point
PDF全文下载地址:http://xbzrb.tju.edu.cn/#/digest?ArticleID=6046
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于极坐标系下二维直方图的图像分割算法
本站小编 Free考研考试/2022-01-16
相关话题/图像 直方图
基于SSIM的自适应样本块图像修复算法
何凯,牛俊慧,沈成南,卢雯霞AuthorsHTML:何凯,牛俊慧,沈成南,卢雯霞AuthorsListE:HeKai,NiuJunhui,ShenChengnan,LuWenxiaAuthorsHTMLE:HeKai,NiuJunhui,ShenChengnan,LuWenxiaUnit:天津大学电 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于色调映射和暗通道融合的弱光图像增强
杨爱萍,赵美琪,宋曹春洋,王金斌AuthorsHTML:杨爱萍,赵美琪,宋曹春洋,王金斌AuthorsListE:YangAiping,ZhaoMeiqi,SongCaochunyang,WangJinbinAuthorsHTMLE:YangAiping,ZhaoMeiqi,SongCaochuny ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于网格与韦泊统计特性的立体图像质量评价
侯春萍,林洪湖AuthorsHTML:侯春萍,林洪湖AuthorsListE:HouChunping,LinHonghuAuthorsHTMLE:HouChunping,LinHonghuUnit:天津大学电气自动化与信息工程学院,天津300072Unit_EngLish:SchoolofElect ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于多特征融合的单幅水下图像清晰化
杨爱萍1,田鑫1,杨炳旺1,王建1,2AuthorsHTML:杨爱萍1,田鑫1,杨炳旺1,王建1,2AuthorsListE:YangAiping1,TianXin1,YangBingwang1,WangJian1,2AuthorsHTMLE:YangAiping1,TianXin1,YangBin ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于盲反卷积的超分辨率图像盲复原算法
元伟1,张立毅1,2AuthorsHTML:元伟1,张立毅1,2AuthorsListE:YuanWei1,ZhangLiyi1,2AuthorsHTMLE:YuanWei1,ZhangLiyi1,2Unit:1.天津大学电子信息工程学院,天津300072;2.天津商业大学信息工程学院,天津3001 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于非局部稀疏表示的立体图像的超分辨率重建
周圆,王爱华,陈莹,侯春萍AuthorsHTML:周圆,王爱华,陈莹,侯春萍AuthorsListE:ZhouYuan,WangAihua,ChenYing,HouChunpingAuthorsHTMLE:ZhouYuan,WangAihua,ChenYing,HouChunpingUnit:天津大 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于图像分解与字典分类的单幅图像去雨算法
庞彦伟,周俊,邓君坪,何宇清AuthorsHTML:庞彦伟,周俊,邓君坪,何宇清AuthorsListE:PangYanwei,ZhouJun,DengJunping,HeYuqingAuthorsHTMLE:PangYanwei,ZhouJun,DengJunping,HeYuqingUnit:天 ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于改进置信度函数及匹配准则的图像修复算法
何凯,高俊俏,卢雯霞AuthorsHTML:何凯,高俊俏,卢雯霞AuthorsListE:HeKai,GaoJunqiao,LuWenxiaAuthorsHTMLE:HeKai,GaoJunqiao,LuWenxiaUnit:天津大学电气自动化与信息工程学院,天津300072Unit_EngLish ...天津大学科研学术 本站小编 Free考研考试 2022-01-16前列腺手术机器人系统超声图像混合配准方法
郑勇男1,梁红花1,杨志永1,刘盛1,王伟2AuthorsHTML:郑勇男1,梁红花1,杨志永1,刘盛1,王伟2AuthorsListE:ZhengYongnan1,LiangHonghua1,YangZhiyong1,LiuSheng1,WangWei2AuthorsHTMLE:ZhengYong ...天津大学科研学术 本站小编 Free考研考试 2022-01-16基于Hadoop的视觉词袋模型图像分类算法
侯春萍1,张倩楠1,王宝亮2,常鹏2,孙韶伟2AuthorsHTML:侯春萍1,张倩楠1,王宝亮2,常鹏2,孙韶伟2AuthorsListE:HouChunping1,ZhangQiannan1,WangBaoliang2,ChangPeng2,SunShaowei2AuthorsHTMLE:Hou ...天津大学科研学术 本站小编 Free考研考试 2022-01-16