王凤雨 教授
应用数学中心教师 主 页: http://math.bnu.edu.cn/jzg/qtyg/115977.html
电 话:
邮 箱: wangfy@tju.edu.cn
研究方向:随机分析教育经历:1983.09-1987.07 安徽师范大学 数学专业 本科/学士1987.09-1990.07 北京师范大学 概率论与数理统计 研究生/硕士1990.09-1993.07 北京师范大学 概率论与数理统计 研究生/博士代表专著:[1] F.-Y. Wang, Functional Inequalities, Markov Semigroups and Spectral Theory, Science Press. 2005. [2] F.-Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, 2013[3] F.-Y. Wang, Analysis of Diffusion Processes on Riemannian Manifolds, World Scientific, 2014. 代表论文:[1] F.-Y. Wang, Sharp explicit lower bounds of heat kernels, Ann. Probab. 25 (1997) [2] F.-Y. Wang, Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constant, Ann. Probab. 27(1999) [3] M. F. Chen and F.-Y. Wang, Cheeger’s inequalities for general symmetric forms and existence criterion for spectral gap, Ann. Probab. 28(2000) [4] M. Cranston and F.-Y. Wang, Equivalence of coupling and shift-coupling, Ann. Probab. 28(2000) [5] F.-Y. Wang, Gradient estimates of Dirichlet semigroups and applications to isoperimetric inequalities, Ann. Probab. 32 (2004) [6] F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab. 35(2007) [7] F.-Y. Wang, Log-Sobolev inequalities: different roles of Ric and Hess, Ann. Probab. 37(2009) [8] F.-Y. Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on non-convex manifolds, Ann. Probab. 39(2011) [9] F.-Y. Wang, Integration by parts formula and shift Harnack inequality for stochastic equations, Ann. Probab. 42(2014) [10] F.-Y. Wang Integrability Conditions for SDEs and Semi-linear SPDEs, Ann. Probab.. (accepted) [11] M. F. Chen and F.-Y. Wang, On order-preservation and positive correlations for multidimensional diffusion processes, Probab. Theory Relat. Fields 95(1993) [12] F.-Y. Wang, Application of coupling method to the Neumann eigenvalue problem, Probab. Theory Relat. Fields 98(1994) [13] F.-Y. Wang, Estimates of the first Dirichlet eigenvalues by using diffusion processes, Probab. Theory Relat. Fields 101(1995) [14] F.-Y. Wang, On estimation of logarithmic Sobolev constant and gradient estimates of heat semigroups, Probab. Theory Relat. Fields 108(1997) [15] F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields 109(1997) [16] M. F. Chen, F.-Y. Wang, Estimation of the first eigenvalue of second order elliptic operators, J. Funct. Anal. 131(1995) [17] M. F. Chen, F.-Y. Wang, Estimates of logarithmic Sobolev constant: an improvement of Bakry-Emery criterion, J. Funct. Anal. 144(1997) [18] A. Thalmaier, F.-Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155(1998) [19] F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal. 170(2000) [20] M. Rockner, F.-Y. Wang, Weak Poincare inequalities and convergence rates of Markov semigroups, J. Funct. Anal. 185(2001) [21] F.-Y. Wang, Functional inequalities and spectrum estimates: the infinite measure case, J. Funct. Anal. 194 (2002) [22] M. Rockner, F.-Y. Wang, Harnack and functional inequalities for generalized Mehler semigroups, J. Funct. Anal. 203 (2003) [23] F.-Y. Wang, Probability distance inequalities on Riemannian manifolds and path spaces, J. Funct. Anal. 206 (2004) [24] E. Priola and F.-Y. Wang, Gradient estimates for diffusion semigroups with singular coefficients, J. Funct. Anal. 236(2006) [25] F.-Y. Wang, A Harnack-type inequality for Non-Symmetric Markov Semigroups, J. Funct. Anal . 239(2006)[26] F.-Y. Wang, Second fundamental form and gradient of Neumann semigroups, J. Funct. Anal. 256(2009) [27] G. Da Prato, M. Rockner, F.-Y. Wang, Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups, J. Funct. Anal. 257(2009) [28] P. Cattiaux, A. Guillin, F.-Y. Wang, L. Wu, Lyapunov conditions for Super Poincaré inequalities, J. Funct. Anal. 256(2009) [29] S. Feng, W. Sun, F.-Y. Wang, F. Xu, Functional inequalities for the unlabeled two-parameter infinite-alleles diffusion, J. Funct. Anal. 260(2011) [30] F.-Y.Wang, Criteria on spectral gap of Markov operators, J. Funct. Anal. 266(2014) [31] F.-Y. Wang, L. Xu, X. Zhang, Gradient estimates for SDEs driven by multiplicative Levy noise, J. Funct. Anal.269(2015), 3195--3219. [32] M. F. Chen, F.-Y. Wang, Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc. 349:3(1997) [33] V. I. Bogachev, M. Rockner, F.-Y. Wang, Elliptic equations for invariant measures on finite and infinite dimensional manifolds, J. Math. Pure Appl. 80(2001) [34] D. Bakry, M. Ledoux and F.-Y. Wang, Perturbations of functional inequalities using growth conditions, J. Math. Pure Appl. 87(2007) [35] F.-Y. Wang, From super Poincare to weighted log-Sobolev and entropy-cost inequalities, J. Math. Pure Appl. 90(2008) [36] F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl. 94(2010) [37] F.-Y. Wang, X. Zhang, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl. 99(2013) [38] V.I. Bogachev, M. Rockner, M., F.-Y. Wang, Invariance implies Gibbsian: some new results, Comm. Math. Phys. 248 (2004) [39] J. Ren, M. Rockner, F.-Y. Wang, Stochastic generalized porous media and fast-diffusion equations, J. Diff. Equations 238(2007) [40] M. Rockner, F.-Y. Wang, Non-monotone stochastic generalized porous media equations, J. Diff. Equations 245(2008) [41] A. Guillin, F.-Y. Wang, Degenerate Fokker-Planck Equations : Bismut Formula, Gradient Estimate and Harnack Inequality, J. Diff. Equations 253(2012) [42] F.-Y. Wang, Gradient Estimates and Applications for SDEs in Hilbert Space with Multiplicative Noise and Dini Continuous Drift, J. Diff. Equations 260 (2016) [43] F.-Y. Wang, Log-Sobolev inequality on non-convex manifolds, Advances in Math. 222(2009)
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
天津大学应用数学中心导师教师师资介绍简介-王凤雨
本站小编 Free考研考试/2020-09-13
相关话题/应用数学 天津大学
天津大学应用数学中心导师教师师资介绍简介-吴偶
吴偶教授应用数学中心教师主页:http://www.escience.cn/people/wuou/index.html电话:邮箱:wuou@tju.edu.cn研究方向:数据挖掘与机器学习教育经历:1999.09-2003.07 西安交通大学 电力工程系 本科/学士2003.09-2006.07 ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-汪更生
汪更生教授应用数学中心教师主页:http://maths.whu.edu.cn/shizililiang/2/2012-12-20/1356.html电话:邮箱:wanggs62@yeah.net;wanggs@tju.edu.cn研究方向:分布参数系统的控制理论,尤其是时间最优控制,周期反馈能稳, ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-吴奕飞
吴奕飞教授应用数学中心教师主页:电话:邮箱:yerfmath@gmail.com研究方向:偏微分方程,调和分析教育经历:2000.9-2004.7 武汉大学 数学与应用数学专业 本科/学士2004.9-2010.6 华南理工大学 基础数学 研究生/博士代表性论文与著作:1.Jiaho ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-陈化
陈化应用数学中心兼职教授主页:http://maths.whu.edu.cn/info/1125/5102.htm电话:邮箱:chenhua@whu.edu.cn ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-宗传明
宗传明教授应用数学中心教师主页:http://portal.math.pku.edu.cn/htdocs/people.php?uid=zongcm电话:邮箱:cmzong@tju.edu.cn研究方向:数的几何,离散几何,格密码教育经历:1980.09-1984.07 山东大学数学 本科/学士19 ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-戴 嵩
戴嵩副教授应用数学中心教师主页:电话:邮箱:daisong0620@gmail.com研究方向:微分几何与PDE教育经历:2010/9-2015/7,北京大学,基础数学,博士2006/9-2010/7,南开大学,基础数学,学士代表性论文与著作:[1]S.Dai“ACurvatureFlowUnif ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-Peter Paule
PeterPaule应用数学中心兼职教授主页:http://www.risc.jku.at/home/ppaule电话:邮箱:Peter.Paule@risc.jku.at ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-范协铨
范协铨副教授应用数学中心教师主页:电话:邮箱:fanxiequan@hotmail.com研究方向:大偏差(Cramér型大偏差;中偏差)重稳定随机过程及其应用集中不等式(Berry-Esseen界;极限理论;指数不等式)鞅;独立随机变量之和;经验过程工作经历:2015.9- ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-胡二彦
胡二彦副教授应用数学中心教师主页:电话:邮箱:eryan.hu@tju.edu.cn研究方向:热核估计;分形上的分析教育及工作经历:2003.09-2007.06 南开大学 信息与计算科学 本科/学士2007.08-2013.06 清华大学 应用数学研究生/博士2011.09-2012.09 美国华 ...天津大学师资导师 本站小编 Free考研考试 2020-09-13天津大学应用数学中心导师教师师资介绍简介-何玲
何玲副教授应用数学中心教师主页:电话:邮箱:heling@tju.edu.cn研究方向:微分几何,几何分析教育及工作经历:2014.07-2016.04中国科学院数学与系统科学研究院基础数学博士后2009.09-2014.07中国科学院大学基础 ...天津大学师资导师 本站小编 Free考研考试 2020-09-13