删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

天津大学应用数学中心导师教师师资介绍简介-王凤雨

本站小编 Free考研考试/2020-09-13

王凤雨 教授
应用数学中心教师 主 页: http://math.bnu.edu.cn/jzg/qtyg/115977.html
电 话:
邮 箱: wangfy@tju.edu.cn

研究方向:

随机分析

教育经历:

1983.09-1987.07 安徽师范大学 数学专业 本科/学士

1987.09-1990.07 北京师范大学 概率论与数理统计 研究生/硕士

1990.09-1993.07 北京师范大学 概率论与数理统计 研究生/博士

代表专著:

[1] F.-Y. Wang, Functional Inequalities, Markov Semigroups and Spectral Theory, Science Press. 2005.

[2] F.-Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations, Springer, 2013

[3] F.-Y. Wang, Analysis of Diffusion Processes on Riemannian Manifolds, World Scientific, 2014.

代表论文:

[1] F.-Y. Wang, Sharp explicit lower bounds of heat kernels, Ann. Probab. 25 (1997)

[2] F.-Y. Wang, Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constant, Ann. Probab. 27(1999)

[3] M. F. Chen and F.-Y. Wang, Cheeger’s inequalities for general symmetric forms and existence criterion for spectral gap, Ann. Probab. 28(2000)

[4] M. Cranston and F.-Y. Wang, Equivalence of coupling and shift-coupling, Ann. Probab. 28(2000)

[5] F.-Y. Wang, Gradient estimates of Dirichlet semigroups and applications to isoperimetric inequalities, Ann. Probab. 32 (2004)

[6] F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab. 35(2007)

[7] F.-Y. Wang, Log-Sobolev inequalities: different roles of Ric and Hess, Ann. Probab. 37(2009)

[8] F.-Y. Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on non-convex manifolds, Ann. Probab. 39(2011)

[9] F.-Y. Wang, Integration by parts formula and shift Harnack inequality for stochastic equations, Ann. Probab. 42(2014)

[10] F.-Y. Wang Integrability Conditions for SDEs and Semi-linear SPDEs, Ann. Probab.. (accepted)

[11] M. F. Chen and F.-Y. Wang, On order-preservation and positive correlations for multidimensional diffusion processes, Probab. Theory Relat. Fields 95(1993)

[12] F.-Y. Wang, Application of coupling method to the Neumann eigenvalue problem, Probab. Theory Relat. Fields 98(1994)

[13] F.-Y. Wang, Estimates of the first Dirichlet eigenvalues by using diffusion processes, Probab. Theory Relat. Fields 101(1995)

[14] F.-Y. Wang, On estimation of logarithmic Sobolev constant and gradient estimates of heat semigroups, Probab. Theory Relat. Fields 108(1997)

[15] F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields 109(1997)

[16] M. F. Chen, F.-Y. Wang, Estimation of the first eigenvalue of second order elliptic operators, J. Funct. Anal. 131(1995)

[17] M. F. Chen, F.-Y. Wang, Estimates of logarithmic Sobolev constant: an improvement of Bakry-Emery criterion, J. Funct. Anal. 144(1997)

[18] A. Thalmaier, F.-Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155(1998)

[19] F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal. 170(2000)

[20] M. Rockner, F.-Y. Wang, Weak Poincare inequalities and convergence rates of Markov semigroups, J. Funct. Anal. 185(2001)

[21] F.-Y. Wang, Functional inequalities and spectrum estimates: the infinite measure case, J. Funct. Anal. 194 (2002)

[22] M. Rockner, F.-Y. Wang, Harnack and functional inequalities for generalized Mehler semigroups, J. Funct. Anal. 203 (2003)

[23] F.-Y. Wang, Probability distance inequalities on Riemannian manifolds and path spaces, J. Funct. Anal. 206 (2004)

[24] E. Priola and F.-Y. Wang, Gradient estimates for diffusion semigroups with singular coefficients, J. Funct. Anal. 236(2006)

[25] F.-Y. Wang, A Harnack-type inequality for Non-Symmetric Markov Semigroups, J. Funct. Anal . 239(2006)

[26] F.-Y. Wang, Second fundamental form and gradient of Neumann semigroups, J. Funct. Anal. 256(2009)

[27] G. Da Prato, M. Rockner, F.-Y. Wang, Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups, J. Funct. Anal. 257(2009)

[28] P. Cattiaux, A. Guillin, F.-Y. Wang, L. Wu, Lyapunov conditions for Super Poincaré inequalities, J. Funct. Anal. 256(2009)

[29] S. Feng, W. Sun, F.-Y. Wang, F. Xu, Functional inequalities for the unlabeled two-parameter infinite-alleles diffusion, J. Funct. Anal. 260(2011)

[30] F.-Y.Wang, Criteria on spectral gap of Markov operators, J. Funct. Anal. 266(2014)

[31] F.-Y. Wang, L. Xu, X. Zhang, Gradient estimates for SDEs driven by multiplicative Levy noise, J. Funct. Anal.269(2015), 3195--3219.

[32] M. F. Chen, F.-Y. Wang, Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc. 349:3(1997)

[33] V. I. Bogachev, M. Rockner, F.-Y. Wang, Elliptic equations for invariant measures on finite and infinite dimensional manifolds, J. Math. Pure Appl. 80(2001)

[34] D. Bakry, M. Ledoux and F.-Y. Wang, Perturbations of functional inequalities using growth conditions, J. Math. Pure Appl. 87(2007)

[35] F.-Y. Wang, From super Poincare to weighted log-Sobolev and entropy-cost inequalities, J. Math. Pure Appl. 90(2008)

[36] F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl. 94(2010)

[37] F.-Y. Wang, X. Zhang, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl. 99(2013)

[38] V.I. Bogachev, M. Rockner, M., F.-Y. Wang, Invariance implies Gibbsian: some new results, Comm. Math. Phys. 248 (2004)

[39] J. Ren, M. Rockner, F.-Y. Wang, Stochastic generalized porous media and fast-diffusion equations, J. Diff. Equations 238(2007)

[40] M. Rockner, F.-Y. Wang, Non-monotone stochastic generalized porous media equations, J. Diff. Equations 245(2008)

[41] A. Guillin, F.-Y. Wang, Degenerate Fokker-Planck Equations : Bismut Formula, Gradient Estimate and Harnack Inequality, J. Diff. Equations 253(2012)

[42] F.-Y. Wang, Gradient Estimates and Applications for SDEs in Hilbert Space with Multiplicative Noise and Dini Continuous Drift, J. Diff. Equations 260 (2016)

[43] F.-Y. Wang, Log-Sobolev inequality on non-convex manifolds, Advances in Math. 222(2009)




相关话题/应用数学 天津大学