删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

天津大学地球系统科学学院导师教师师资介绍简介-王礼春

本站小编 Free考研考试/2020-09-13

更多





王礼春 性别:男
职称:副教授
More>
3d2f11f7ab7a6b83cf35d37278eb02ff43b07a04918f4fa517f63e4e0c1027f1c3afc9013d727abb7adc35dedd02886b0a3c53ec669ee4bf7a3d324974ca840519fbee519693cba5de**a2a7cfe85253d45554f7c20fcedf7409dbc00251ac6f7efa21e1a02f80a5a313a679e33a0f5fb1518b91e4d358fb0a3cbefd0c
b2d92b70ec3da**b1c54eebddbe**b4b6b7e47e64e989b85c9a4b20faa8edb6c46f740a7e085e9b3ced08558f9555a99002ed43f42e1b29cd28dcf227df91687a9162dda64fed1a99478d6bf29df93e82b0c7c32e6a99ddfc98af0c6a8ce7beb69ed7bde355744ee7898dd
aafde9e7822c0a6c804927d40c98d0970c4cdf4b5b90998efe63edd35c6e0a7cfb4c36267e56c9c2d8d8efe**b0b8bbd1da30916fbd7a7321b59a96d3ddf7a9ebc268f97253ddf9b9127d888ac88cb1deb11b7e2f5c3b622ffff4bb16e4d570ddbe817f05c6bce841851db8ac4f9





教育经历
· 2010.8 - 2015.5 德克萨斯大学奥斯汀分校 -地球科学 -博士
· 2007.9 - 2010.6 中国地质大学(北京) -水文学及水资源 -硕士
· 2003.9 - 2007.6 中国地质大学(北京) -水文与水资源工程 -学士


工作经历
· 2018.9- 至今 天津大学 
· 2015.6 - 2018.7 德克萨斯大学奥斯汀分校 →博士后


研究方向
· 环境流体及溶质运移(水流系统中物质迁移)
· 多孔及裂隙介质渗流与物质(溶质、污染物)传输
· 地下水-地表水相互作用
· 滨海湿地水-盐运移机理及其对生态环境影响
· 地下水与地面沉降数值模拟


授课信息
· 水资源与生态环境
· 水与地球



社会兼职
· 2020.4-至今国际期刊《Groundwater》副主编




个人简介 欢迎访问我的主页!

我长期从事地下水系统河湖水系统中涉及的水动力和物质传输等水文过程。主要利用高端数值模拟、精密室内实验、和缜密的野外观测水量和水质数据来分析不同尺度(从微观到全球尺度)上物质运输机理及其数值模型预测,并探讨其对气候变化以及生态环境的影响。

在Geophysical Research Letters、Water Resources Research、Journal of Geophysical Research等期刊上发表30余篇SCI 论文。2013年获全球范围内竞争的美国石油地质学家协会奖学金;多次在AGU、GSA等国际会议上做口头报告,牵头组织美国德克萨斯大学奥斯汀分校学术研讨会、中日交流论坛等学术会议;曾作为核心骨干参与两项美国能源部重大基础研究项目(总金额2620万美元),正在主持国家自然科学基金面上项目;曾担任美国自然科学基金项目评审专家,GRL、WRR和EST等10余个主流国际期刊审稿人,目前担任国际期刊Groundwater副主编。

欢迎对水动力和物质传输过程等研究方面感兴趣的同学积极报考!

研究方向展示1:水动力过程 - 达西和非达西定律


研究方向展示2:裂隙中溶质运移过程




学术成果
论文成果
[1]The complexity of nonlinear flow and non-fickian transport in fractures driven by three-dimensional recirculation zones

[2]Effect of fluid slippage on eddy growth and non-Darcian flow in rock fractures

[3]Can homogeneous slip boundary condition affect effective dispersion in single fractures with Poiseuille flow?

[4]Analysis of permeability change in dissolving rough fractures using depth-averaged flow and reactive transport models

[5]Ripple effects: bedform morphodynamics cascading into hyporheic zone biogeochemistry

[6]Seismicity enhances macrodispersion in finite porous and fractured domains: A pore-scale perspective

[7]Disentangling the simultaneous effects of inertial losses and fracture dilation on permeability of pressurized fractured rocks

[8]Universal relationship between viscous and inertial permeability of geologic porous media

[9]Mass Transfer Between Recirculation and Main Flow Zones: Is Physically Based Parameterization Possible?

[10]When can the local advection–dispersion equation simulate non-Fickian transport through rough fractures?

[11]Scale‐dependent Poiseuille flow alternatively explains enhanced dispersion in geothermal environments

[12]Emergence of nonlinear laminar flow in fractures during shear, Rock Mechanics and Rock Engineering

[13]Connecting pressure-saturation and relative permeability models to fracture properties: The case of capillary-dominated flow of supercritical CO2 and brine

[14]Modeling colloid transport in fractures with spatially variable aperture and surface attachment

[15]Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change

[16]Non-Fickian dispersive transport of strontium in laboratory-scale columns: Modelling and evaluation

[17]Transition from non-Fickian to Fickian longitudinal transport through 3-D rough fractures: Scale-(in)sensitivity and roughness dependence

[18]An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation

[19]Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones

[20]Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness

[21]Non-Fickian transport through two-dimensional rough fractures: Assessment and prediction

[22]Theory for dynamic longitudinal dispersion in fractures and rivers with Poiseuille flow







奖励与荣誉
1. Frank E. Kottlowski Memorial Grant



团队
水动力及物质迁移过程 研究目标:解决水运动机理以及运动过程中引起物质迁移、转化机制。
研究方法:室内实验、数值模拟、大数据分析等
研究对象:地下水系统、河湖水系统


王俊楠





更多>> 相册


AGU Fall Meeting-2018


AGU Fall Meeting - 2019











Address: no. 92, weijin road, nankai district, tianjin Tel: Zip code: 300072
Click:/ 最后更新时间:..



相关话题/地球 天津大学