删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

天津工业大学数学科学学院导师教师师资介绍简介-张子恒简介

本站小编 Free考研考试/2020-09-26



姓名:张子恒 最高学位:博士 出生年月:1981年12月
导师资质:硕导职称:副教授邮箱:zhangziheng@tjpu.edu.cn 所在系:应用数学系

教育背景及工作经历

2014/12–至今,天津工业大学,理学院,副教授
2010/07–2014/12,天津工业大学,理学院,讲师

2007/09 - 2010/07,北京师范大学,数学科学学院,博士,导师:袁荣
2004/09 - 2007/07,北京师范大学,数学科学学院,硕士,导师:黎雄
2000/09 - 2004/07,聊城大学,数学与系统科学学院,学士

研究领域
张子恒同志一直从事微分方程与动力系统方面的研究工作,特别是利用临界点理论、变分方法以及非线性分析工具深入研究了二阶Hamilton 系统、分数阶微分方程、四阶非线性微分方程、变指数微分方程和二阶奇异微分方程的相关问题,包括边值问题、周期解的存在性和多解性以及同宿解的存在性和多解性问题,并在在相关领域取得了很有学术价值的研究成果。这些成果不仅丰富了相关领域已有的理论基础, 而且为进一步开展研究相关问题更复杂的动力学行为提供了新的思路和方法。部分成果已经成为相关领域具有代表性的工作,得到国内外同行的高度评价,相关的成果多次被国内外****在国际高水平杂志上引用,多次被邀请在国内学术会议上作相关问题的学术报告。目前论文他引次数300余次,其中单篇SCI他引次数最高为80多次,在所属研究领域成为高被引论文。

讲授课程
常微分方程, 高等数学, 线性代数
主要承担项目

1两类二阶微分方程的同宿解问题国家级国家自然科学基金2012-01至2014-1222第一
2奇异微分方程的同宿轨与异宿轨研究国家级国家自然科学基金2013-01至2015-1222第二
3农作物害虫综合优化治理的数学建模与应用国家级国家自然科学基金2015-01至2018-1270第四
4几类具有状态依赖时滞微分方程的定性分析国家级国家自然科学基金2016-01至2018-1221.04第二
5非线性问题中的动力学及其复杂性国家级国家自然科学基金2018年1月至2021年12月48 第二

主要论文著作

1.Ziheng Zhang and Zhilu Liu,Homoclinic solutions for fourth orderdifferential
equations with superlinear nonlinearities,Journal of Applied Analysis & Computation,8( 2018) ,66-80.
2.Ziheng Zhang and Cesar E. Torres Ledesma, Solutions for a class of fractional
Hamiltonian systems with a parameter, J. Appl. Math. Comput., 54 (2017) ,451-468.
3.Ziheng Zhang;RongYuan,Homoclinic Solutions for p-Laplacian Hamiltonian
Systems with Combined Nonlinearities, Qualitative Theory of Dynamical Systems, 16(2017),761-774.
4.Ziheng Zhang, Honglian You,Rong Yuan, Homoclinic solutions for second order
Hamiltonian systems with general potentials,MathematicaSlovaca, 66(2016), no. 4, 887–900.
5.Ziheng Zhang, Solutions for a class of fractional boundary value problem with
mixednonlinearities, Bulletin of the KMS, 53(2016), no.5, 1585-1596.
6.Ziheng Zhang and Rong Yuan, Existence of two almost homoclinic solutionsfor
p(t)-Laplacian Hamiltonian systemswith a small perturbation, J. Appl. Math. Comput., 52 (2016), no. 1-2,173-189.
7.Ziheng Zhang, Tian Xiang and Rong Yuan, Homoclinic Solutions for
p(t)-Laplacian-Hamiltonian Systems Without Coercive Conditions,Mediterr. J. Math.,13 (2016), no.4, 1589-1611.
8.Ziheng Zhang and Rong Yuan, Existence of solutions to fractional Hamiltonian
systems withcombined nonlinearities, Electron. J. Diff. Equ., Vol. 2016 (2016), No. 40, pp. 1-13.
9.Ziheng Zhang and Rong Yuan, Infinitely-many solutions for subquadratic
fractional Hamiltonian systems with potential changing sign, Advance in Nonlinear Analysis, 4 (2015), no. 1, 59-72.
10.Ziheng Zhang and Jing Li, Variational approach to solutions for a class of
fractional boundary value problems, Electronic Journal of Qualitative Theory of Differential Equations,11(2015),1-10.
11.Ziheng Zhang and Rong Yuan, Two almost homoclinic solutions for a class of
perturbed Hamiltonian systems without coercive conditions, Math. Model. Anal., 20 (2015), no. 1, 112-123.
12.Ziheng Zhang and Rong Yuan,Homoclinic solutions for a nonperiodic fourth
order differential equations without coercive conditions, App. Math.andComput., 250, (2015),280-286.
13.Zhang zihengang Yuan Rong, Solutions for subquadratic fractionalHamiltonian
systems withoutcoercive conditions, Math. Meth. Appl. Sci., 2014, (37), 18, 2934-2945.
14.Ziheng Zhang and Rong Yuan, Infinitely many homoclinic solutions for damped
Vibrationproblems with subquadratic potentials, Commun. Pure Appl. Anal., (13) 2, (2014) 623-634.
15.Zhang, Ziheng, Liao, Fang-Fang and Wong, Patricia J. Y., Homoclinic solutions for
a class ofsecond order nonautonomous singular Hamiltonian systems, Abstract and Applied Analysis
16.Zihang Zhang, Existence of homoclinic solutions for second order Hamiltonian
systems with general potentials, J Appl Math.Comput,(44) 1-2,(2014),263-272.
17.Zhang ziheng Xiang Tian and Yuan Rong, Homoclinic solutions for subquadratic
Hamiltoniansystems without coercive conditions, (18) 4, (2014), 1089-1105.
18.Z. H. Zhang and R. Yuan, Variational approach to solutions for a class offractional
Hamiltonian systems, Math. Meth. Appl. Sci., 2014, (37), 13, 1873-1883.



成果及荣誉
1. 2014年入选“天津市“131创新型人才第三层次”
2. 2015年获得“天津市数学会首届青年学术奖三等奖”
3. 2017年入选天津市“中青年骨干创新人才培养计划”
4. 2018年入选“天津市“131创新型人才第二层次”

社会兼职
德国数学文摘评论员
期刊Journal of Advances in Applied & Computational Mathematic 的编委






相关话题/天津工业大学 数学