删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

天津商业大学理学院导师教师师资介绍简介-张广

本站小编 Free考研考试/2020-10-06

姓名:张广
职务:无
职称(硕博导师):教授、博导、硕导
学历:博士
研究方向:微分方程与动力系统,非线性泛函分析

一、 发表的科学研究论文:

[156] J. J. Li, J. L. Wu and G. Zhang, Estimation of intrinsic growth factors in a class of stochastic population model, Stochastic Analysis and Applications, 2019, DOI:10.1080/**.2019.**
[155] L. L. Meng, Y. T. Han, Z. Y. Lv and G. Zhang, Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model, Discrete Dynamics in Nature and Society2019:1-9, DOI:10.1155/2019/**
[154] X. F. Li, S. W. Ma and G. Zhang, Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Analysis: Real World Applications, 45(2019), 1-25.
[153] 张广,张敏,宋冰洁. 动态价格下Logistic生长模型的捕获问题[J]. 经济数学,2018,4(35):39-44.
[152] 张敏,张广. 动态价格下Gompertz系统的捕捞问题[J]. 应用数学进展,2018,7(7):776-781.
[151] L. Xu, S. S. Lou, P. Q. Xu and G. Zhang, Feedback Control and Parameter Invasion for a Discrete Competitive Lotka–Volterra System, Discrete Dynamics in Nature and Society, Volume 2018, Article ID **, 8 pages, https://doi.org/10.1155/2018/**.
[150] L. Xu, J. Y. Liu and G. Zhang, Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system, Chaos, Solitons & Fractals, 110(2018), 226-231.
[149] J. M. Guo, S. W. Ma and G. Zhang, Solutions of the autonomous Kirchhoff type equations in RN, Applied Mathematics Letters 82 (2018), 14–17.
[148] L. L. Meng, X. F. Li and G. Zhang, Simple diffusion can support the pitchfork, the flip bifurcations, and the chaos, Communications in Nonlinear Science and Numerical Simulation, Commun Nonlinear Sci Numer Simulat 53 (2017) 202–212.
[147] S. L. Sun, Y. R. Sun, G. Zhang and X. Z. Liu, Dynamical behavior of a stochastic two-species Monod competition chemostat model, Appl. Math. Comput., 298(2017), 153-170.
[146] Y. Q. Du, W. Feng, Y. Wang and G. Zhang, Positive solutions for a nonlinear algebraic system with nonnegative coefficient matrix, Applied Mathematics Letters 64 (2017) 150–155.
[145] Xu L, Zhang G, Cui H (2016) Dependence of Initial Value on Pattern Formation for a Logistic Coupled Map Lattice. PLoS ONE 11(7): e**. doi:10.1371/journal.pone.**.
[144] Y. Q. Du, G. Zhang and W. Y. Feng, Existence of positive solutions for a class of nonlinear algebraic systems, Mathematical Problems in Engineering, Mathematical Problems in Engineering, Volume 2016, Article ID **, 7 pages, http://dx.doi.org/10.1155/2016/**
[143] X. F. Li and G. Zhang, Positive Solutions of a General Discrete Dirichlet Boundary Value Problem, Discrete Dynamics in Nature and Society, Volume 2016, Article ID **, 7 pages,
http://dx.doi.org/10.1155/2016/**
[142] M. F. Li, G. Zhang, Z. Y. Lu and L. Zhang, Diffusion-driven instatiblity and patterns of Leslie-Gover competition model, Journal of Biological Systems, Vol. 23, No. 3 (2015) 385–399
[141] X. F. Li and G. Zhang, Existenceoftimehomoclinicsolutionsfor aclassofdiscretewave
equations, Advance in Difference Equations, (2015) 2015:358 DOI 10.1186/s13662-015-0696-z, 1-15.
[140] W. Feng and G. Zhang, New fixed point theorems on order intervals and their applications, Fixed Point Theory and Applications, (2015) 2015:218 DOI 10.1186/s13663-015-0467-2, 1-10.
[139] G. Zhang, W. Feng and Y. B. Yang, Existence of time periodic solutions for a class of non-resonant discrete wave equations, Advance in Difference Equations, (2015) 2015:120, 1-13, DOI 10.1186/s13662-015-0457-z.
[138] G. Zhang and S. Ge, Existence of positive solutions for a class of discrete Dirichlet boundary value problems, Applied Mathematics Letters, 48 (2015) 1-7.
[137] X. F. Li, G. Zhang and Y. Wang, Existence and uniqueness of positive solitons for a second order difference equation, Discrete Dynamics in Nature and Society, Volume 2014, Article ID 503496, 8 pages, http://dx.doi.org/10.1155/2014/503496.
[136] LiXu,LianjunZou,ZhongxiangChang,ShanshanLou,XiangweiPeng,GuangZhang, BifurcationinaDiscreteCompetitionSystem,DiscreteDynamicsinNatureandSociety, 2014, ArticleID193143,7pages.
[135] Li Li, Guang Zhang, Gui-Quan Sun and Zhi-Jun Wang, Existence of periodic positive solutions for a competitive system with two parameters, Journal of Difference Equations and Applications, 20(3)(2014), 341-353.
[134] 胡杨林,张广,一个反应扩散流行病模型的复杂动力学,科技信息,2013-01-15,199.
[133] 胡杨林,张广,具有时滞的空间SIR传染病模型的动力学分析,科技信息,2013-03-15,157,
[132] L. Meng, G. Zhang,S. Xiao and J. Bao,Turing instability for a two dimensional semi-discrete Gray-Scott system, Wseas Transactions on Mathematics, 12(2)(2013), 221-229.
[131] W. Feng and G. Zhang, Eigenvalue and Spectral Intervals for a Nonlinear Algebraic System, Linear Algebra and Its Applications, 439 (2013) 1-20.
[130] L. Xu, L. J. Zhao, Z. X. Chang, J. T. Feng and G. Zhang, Turing instability in a semi-discrete Brusslator model, Modern Physics Letters B, 27(1)(2013), **-1-9.
[129] Meifeng Li, Bo Han, Li Xu, Guang Zhang, Spiral patterns near Turing instability in a discrete reaction diffusion system, Chaos, Solitons & Fractals 49 (2013) 1–6.
[128] Defu Li, G. Zhang, Influence of time delay and diffusion on SIR epidemic model with bilinear incidence rate. Internationnal Journal of Information and Systems Sciences,8(4)(2012), 525–532.
[127] 李得福,张广. 带扩散的捕食者食饵系统平衡点的稳定性分析. 科技信息,2013,(06)124.
[126] Lu Zhang, G. Zhang and Wenying Feng, Turing instability generated from discrete diffusion-migeration systems, Canadian Applied Mathematics Quarterly, 20(2), Summer 2012, 253-269.
[125] F. X. Mai, L. J. Qin and G. Zhang, Turing instability for a semi-discrete Gierer-Meinhardt system, Physica A, 391(2012), 2014-2022.
[124] M. F. Li, G. Zhang, H. F. Li and J. L. Wang, Periodic travelling wave solutions for a coupled map lattice, Wseas Transactions on Mathematics, 11(1)(2012), 64-73.
[123] L. Xu, G. Zhang and J. F. Ren, Turing instability for a two dimensional semi-discrete Oregonator model, Wseas Transactions on Mathematics, 10(6)(2011), 201-209.
[122] Y. T. Han, B. Han, L. Zhang, Li Xu, M. F. Li and G. Zhang, Turing Instability and Wave Patterns for a Symmetric Discrete Competitive Lotka-Volterra System, Wseas Transactions on Mathematics, 10(5)(2011), 181-189.
[121]李莉,张广,靳祯,离散捕食系统正周期解的存在性,中北大学学报(自然科学版),31(2010)95-99.
[120] 王玲,赵中建,张广,一类多时滞有捕获的Leslie-Gower型捕食系统的Hopf分支,华北水利水电学院学报,31(2)(2010)
[119] L. Xu, G. Zhang, B. Han, L. Zhang, M.F. Li, Y.T. Han, Turing instability for a two-dimensional Logistic coupled map lattice, Physics Letters A 374 (2010) 3447–3450.
[118] 常佳佳,张广,具有捕食者相互残杀项时滞系统的Hopf分支,数学实践与认识,39(12)(2009), 97-102.
[117] 白亮, 张广,离散热传导方程文稳态解的存在性,青岛理工大学学报,30(3)(2009),
[116] G. Zhang and J. R. Yan, Solutions On An Impulsive Compartmental System, Dynamics of Continuous, Discrete and Impulsive Systems, Series A, 16(2009), 725-735.
[115] G. Q. Sun, G. Zhang, Z. Jin and L. Li, Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dynamics, 58(1-2)(2009), 75-84.
[114] G. Zhang, L. Bai, Existence of solutions for a nonlinear algebraic system, Discrete Dynamics in Nature and Society, Volume 2009, Article ID 785068, 28 pages.
[113] X. L. Liu and G. Zhang, Positive and Sign-changing Solutions for Fourth-order BVPs with Parameters, J. Appl. Math. Computing, 31(2009), 177-192.
[112] G. Q. Sun, G. Zhang and Z. Jin, Dynamic behavior of a discrete modified Ricker & Beverton_Holt model, Computers and Mathematics with Applications, 57(8)(2009), 1400-1412.
[111] L. Bai and G. Zhang, Existence of Nontrivial Solutions for A Nonlinear Discrete Elliptic Equation with Periodic Boundary Conditions, Applied Mathematics and Computation, 210(2009), 321-333.
[110] 袁虎廷,王权,张广,关于带周期系数的Bernoulli方程及其较好的离散模型,山西大同大学学报,24(4)(2008)
[109] 张广, 时宝, 三类非线性代数方程系统解的存在性, 海军航空工程学院学报, 233(3)(2008), 55-357.
[108] G. Zhang and S. S. Cheng, Nota sobre un sistema compartimentado con retrasos, La Gaceta de la RSME, Vol. 11 (2008), Núm. 4, Págs. 687–692.
[107] G. Zhang, Y. L. Luo and L. Bai, Existence and stability of non-zero steady state solution pairs for discrete neutral networks, ICNC-FSKD2008, Jinan, Shandong, China, Edited by Maozu Guo, Liang Zhao and Lipo Wang, Fourth International Conference on Natural Computation, Vol. 3, 185-189.
[106] W. Han and G. Zhang, Twin positive solutions of a nonlinear m-point boundary value problem for third-order p-Laplacian dynamic equation on time scales. Discrete Dynamics in Nature and Society, Volume 2008 (2008), Article ID 257680, 1-19.
[105] G. Zhang and Z. L. Yang, Positive Solutions of A General Discrete Boundary Value Problem, J. Math. Anal. Appl., 339(2008), 469-481.
[104] G. Zhang and S. Stevic, On the difference equation , J. Appl. Math. Computing, 25(1-2)(2007), 269-282.
[103] W. Y. Feng, G. Zhang and Yikang Chai, Existence of positive solutions for secord order differential equations arising from chemical reactor theory, Discrete and Continuous Dynamical Systems, Supplement 2007, 373-381.
[102] G. Zhang, D. M. Jiang and S. S. Cheng, 3-Periodic Traveling Wave Solutions for a Dynamical Coupled Map Lattice, Nonlinear Dynamics, 50(1-2)(2007), 235-247(SCI, IDSNumber: 203YP).
[101] B. B. Du and G. Zhang, Classification and Existence of Non-oscillatory Solutions for Two-Dimensional Neutral Difference System, Proceedings of the SNPD-2007, 8th ACIS International Conference on Saftware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Edited by Wenying Feng and Geng Gao, Volume III, July 30-August 1, 2007, Haier International Training Center, Qingdao, China, pp. 567-572.
[100] G. Zhang and B. Shi, Clever Uses of Matrices for Neutral Delay Difference Systems, Proceedings of the SNPD-2007, 8th ACIS International Conference on Saftware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Edited by Wenying Feng and Geng Gao, Volume I, July 30-August 1, 2007, Haier International Training Center, Qingdao, China, pp. 417-421.
[99] Huting Yuan, Guang Zhang and Hongliang Zhao, Existence of Positive Solutions for a Discrete Three-Point Boundary Value ProblemDiscrete Dynamics in Nature and Society, Volume 2007 (2007), Article ID 49293, 1-14.
[98] Limei Zhou, Yue Wu, Liwei Zhang and Guang Zhang, Convergence Analysis of a Differential Equation Approach for Solving Nonlinear Programming Problems, Applied Mathematics and Computation, 184(2)(2007), 789-797.
[97] G. Zhang and W. Feng, On the Number of Positive Solutions of A Nonlinear Algebriac System, Linear Algebra and Its Applications, 422(2-3)(2007), 4040-421.
[96] G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Analysis TMA66(6)(2007), 1410-1416.
[95] H. H. Bin, L. H. Huang and G. Zhang, Convergence and Periodicity of Solutions for a Class of Difference Systems, Advances in Difference Equations, 2006/70461(2006), 1-10.
[94] S. G. Kang, G. Zhang and B. Shi, Existence of three periodic positive solutions for a class of integral equations with parameters, J. Math. Anal. Appl., 323(1)(2006), 654-665.
[93] G. Zhang, Existence of Nontrivial Solutions for Discrete Elliptic Boundary Value Problems, Numerical Methods for Partial Differential Equations, 22(6)(2006), 1479-1488.
[92] 张广, 一类代数方程系统解的存在性, 青岛理工大学学报, 27(5)(2006), 1-7.
[91] J. L. Wang and G. Zhang, Asymptotic weighted periodicity for delay differential equations, Dynamic Systems and Applications, 15(2006), 479-500.
[90] R. Medina and G. Zhang, Oscillation of A Class of Partial Difference Equations with Oscillatory Coefficients, Far East Math. & Math. Sci., 23(2)(2006), 157-169.
[89] Y. M. Wang and G. Zhang, Existence of nontrivial anti-periodic solutions for nonlinear second order difference equations, Far East J. Math. Sci., 32(2)(2006), 145-155.
[88] M. Migda and G. Zhang, On unstable neutral difference equations with “maxima”, Math. Slovaca, 56(3)(2006),
[87] G. Zhang and S. S. Cheng, Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl., 314(1)(2006), 311-319.
[86] G. Zhang, S. G. Kang and S. S. Cheng, Periodic solutions for a couple pair of delay difference equations, Advances in Difference Equations, 3(2005), 215-226.
[85] G. Zhang and L. J. Zhang, Periodicity and Attractivity of A Nonlinear Higher Order Difference Equation, Appl. Math. Comput., 126(2)(2005), 395-401.
[84] H. L. Zhao, G. Zhang and S. S. Cheng, Exact Traveling Wave Solutions for Discrete Conservation Laws, Portugaliae Mathematica, 62(1)(2005), 89-108.
[83] S. G. Kang and G. Zhang, Existence of Nontrivial Periodic Solutions for First-Order Functional Differential Equations, Applied Mathematics Letters, 18(1)(2005), 101-107.
[82] G. Zhang and S. S. Cheng, Ontwosecondorderhalf-lineardifferenceequations, Fasciculi Mathematici(Poland), 35(2005), 163-175.
[81] G. Zhang and M. Migda, Unstable neutral differential equations involving the maximum function, Glasnik Mathematiki (Poland), 40(60)(2005), 249-259.
[80] L. J. Zhang, G. Zhang and H. Liu, Periodicity and attractivity of a nonlinear higher order difference equation, Applied Mathematics & Computing, 19(1-2)(2005), 191-201.
[79] G. Zhang and J. R. Yan, Existence and Nonexistence of Eventually Positive Solutions for Nonlinear Neutral Differential Equations, Appl. Math. Comput.,156(3)(2004), 653-664.
[78] G. Zhang and M. Migda, Monotone Solutions of a Higher-Order Neutral Differential Equation, Commentationes Mathematicae, XLIV(1)(2004), 147-162.
[77] M. Migda and G. Zhang, Monotone solutions of neutral difference equations of odd order, J. Difference Equations & Applications, 10(7)(2004), 691-703.
[76] G. Zhang and Z. L. Yang, Existence of $2^{n}$ Nontrivial Solutions for Discrete Two-Point Boundary Value Problems, Nonlinear Analysis TMA, 59(7)(2004), 1181-1187.
[75] X. L. Liu, G. Zhang and S. S. Cheng, Existence of Three Positive Periodic Solutions for Non-Autonomous Functional Differential Equations, Abstract Anal. Appl., 9(10)(2004), 897-905.
[74] G. Zhang and S. S. Cheng, Positive Periodic Solutions of Coupled Delay Differential Systems depending on Two Parameters, Taiwanese Math. J., 8(4)(2004), 639-652.
[73] G. Zhang and R. Medina, Three-point boundary value problems for difference equations, Computers & Mathematics with Applications, 48(12)(2004), 1791-1799.
[72] M. I. Gil, S. G. Kang and G. Zhang, Positive periodic solutions of abstract difference equations, Applied Math. E-Notes, 4(2004), 54-58.
[71] 高英,张广,葛渭高,时滞差分方程周期正解的存在性,系统科学与数学,33(2)(2003), 155-162.
[70] Y. Gao and G. Zhang, Eventually positive solutions for neutral -differential equations, Far East J. Math. Sciences, 8(2)(2003), 121-130.
[69] S. G. Kang and G. Zhang, Existence of positive periodic solutions for a class of integral equations , Far East J. Math. Sciences, 9(2)(2003), 121-128.
[68] G. Zhang and S. S. Cheng, Positive periodic solutions for discrete population models, Nonlinear Funct. Anal. & Appl., 8(3)(2003), 335-344
[67] S. G. Kang, G. Zhang and S. S. Cheng, Periodic Solutions of a Class of Integral Equations, Topological Methods in Nonlinear Analysis, 22(2)(2003), 245-252.
[66] G. Zhang and S. S. Cheng, Eventually positive solutions of nonlinear neutral difference equations, Intern. Math. Journal, 2(2)(2002), 265-278.
[65] G. Zhang, Oscillation for nonlinear neutral difference equations, Applied Math. E-Notes, 2(2002), 22-24.
[64] Y. P. Guo, Y. Gao and G. Zhang, Existence of positive solutions for singular second order boundary value problems, Applied Math. N-Notes, 2(2002), 125-131.
[63] G. Zhang and S. S. Cheng, Positive periodic solutions of non-autonomous functional differential equations depending on a parameter, Abstract Anal. Appl., 7(5)(2002), 279-286.
[62] 张广,陈慧琴,含最大中立型差分方程非振动解的渐近性,雁北师范学院学报,182002),1-6.
[61] G. Zhang, Bifurcation and periodic positive solutions of nonautonomous functional differential systems, Research Report, AMSS-V-2001-061.
[60] G. Zhang, Bifurcation for delay difference equations, Research Report, AMSS-V-062.
[59] S. S. Cheng and G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electronic J. Diff. Eqs., Vol. 2001(2001), No. 59, 1-8.
[58] Y. Gao and G. Zhang, Oscillation of first order neutral difference equation, Applied Math. E-Notes, 1(2001), 5-10.
[57] S. S. Cheng, Y. Z. Lin and G. Zhang, Traveling waves of a discrete conservation law, PanAmer. Math. J., 11(1)(2001), 45-52.
[56] B. G. Zhang and G. Zhang, Nonoscillations of second order neutral differential equations of maxima, Communication in Applied Analysis, 4(1)(2000), 31-38.
[55] L. Q. Mao and G. Zhang, Nonoscillation criteria of nonlinear second order differential equations, Proceedings of International Conference Advanced Problems in Vibration Theory and Applications, June 19-22, 2000, Xi’an, China, Edited by: J. H. Zhang and X. N. Zhang, 531-534.
[54] S. S. Cheng and G. Zhang, “Virus” in several discrete oscillation theorems, Appl. Math. Lett., 13(2000), 9-13.
[53] G. Zhang and H. Q. Chen, Nonexistence and existence criteria of eventually positive solutions for a class of nonlinear neutral difference equations, Nonlinear Sdudies, 7(2)(2000), 251-258.
[52] S. S. Cheng and G. Zhang, Existence criteria for positive solutions of a nonlinear difference equality, Ann. Polonici Math., LXXIII3(2000), 197-220.
[51] G. Zhang, Eventually positive solutions of odd order neutral differential equations, Appl. Math. Lett., 13(2000), 55-61.
[50] R. Y. He and G. Zhang, The dual characteristics of LK-UR and K-SS space, Far East J. Math., 2(5)(2000), 731-737.
[49] S. S. Cheng and G. Zhang, Positive periodic solutions of a discrete population model, Functional Differential Equations, 7(3-4)(2000), 223-230.
[48] 张广,高英,高阶非线性差分方程的正解,系统科学与数学,19(2)(1999), 157-161.
[47] 张广,高阶中立型微分方程的周期解,数学研究与评论,19(增)(1999), 287-290.
[46] 米芳, 高英,张广,中立型时滞微分方程最终正解的存在性和不存在性,雁北师院学报,15(3)(1999), 5-8.
[45] G. Zhang, W. T. Li and S. S. Cheng, Necessary and sufficient conditions for oscillation of delay difference equations with continuous arguments, Far East J. Math. & Sciences, 7(4)(1999), 643-648.
[44] G. Zhang and S. S. Cheng, Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation, Appl. Math., 25(4)(1999), 393-399.
[43] W. T. Li, S. S. Cheng and G. Zhang, A classification scheme for nonoscillatory solutions of a higher order neutral nonlinear difference equation, J. Austral. Math. Soc., (Series A) 66(1999), 1-12.
[42] B. G. Zhang and G. Zhang, Qualitative properties of functional differential equations with “Maxima”, Rocky Mountain Math. J., 29(1)(1999), 357-367.
[41] S. S. Cheng, G. Zhang and M. Dehghan, Growth conditions for a two level disrete heat equation, Proceedings of the Seventh Workshop on Differential Equations and its Applications, National Chung-Hsing University, Taiwan, 1999, 56-62.
[40] G. Zhang and S. S. Cheng, On connected half-linear differential equations, Demonstratio Mathematica, 32(2)(1999), 345-354.
[39] G. Zhang and S. S. Cheng, Note on a discrete Emden-Fowler equation, PanAmerican J. Math. 9(3)(1999), 57-64.
[38] S. S. Cheng, G. Zhang and S. T. Liu, Stability of oscillatory solutions of difference equations with delays, Taiwanese J. Math., 3(4)(1999), 503-515.
[37] S. S. Cheng, S. T. Liu and G. Zhang, A multivariate oscillation theorem, Fasciculi Math., 30(1999), 15-22.
[36] S. S. Cheng, G. Zhang and W. T. Li, On a higher order neutral difference equation, Mathematical Analysis and Applications (ed. Th. M. Rassias), Hadronic Press, Inc., Palm Harbor, Florida, 1999, pp. 37-64.
[35] G. Zhang and S. S. Cheng, A necessary and sufficient oscillation condition for the discrete Euler equation, PanAmerican J. Math., 9(4)(1999), 29-34.
[34] G. Zhang and S. S. Cheng, Asymptotic stability of nonoscillatory solutions of nonlinear neutral differential equations involving the maximum function, International J. Applied Math., 1(7)(1999), 771-779.
[33] G. Zhang , S. S. Cheng and Y. Gao, Classification schemes for positive solutions of a second order nonlinear difference equation, J. Comp. Appl. Math., 101(1999), 39-51.
[32] S. S. Cheng and G. Zhang, Monotone solutions of a higher order neutral difference equation, Georgian Math. J., 5(1998), 49-54.
[31] G. Zhang, Nonexistence of positive solutions of partial difference equation with continuons arguments, Far East J. Math. Sciences, 6(1)(1998), 89-92.
[30] 高英、张广,一类非线性中立型微分方程的振动性,山西省数学会1998年学术年会论文集,山西教育出版社,1998,pp41-44。
[29] B. G. Zhang and G. Zhang, Oscillation of nonlinear difference equations of neutral type, Dynamic Systems and Applications, 7(1)(1998), 85-92.
[28] 高英,张广,二阶中立型差分方程非振动解的渐近性,微分方程理论和应用,南海出版公司,1998,pp21-25
[27] 高英,张广,二阶中立型时滞微分方程非振动解的渐近性,华北工学院,19(2)(1998), 108-111.
[26] G. Zhang and S. S. Cheng, Elementary oscillation criteria for a three term recurrence with oscillatroy coefficient sequence , Tamkang J. Math., 29(3)(1998), 227-232.
[25] 张广,一类泛函微分方程和差分方程的振动性,大同高专学报,12(3)(1998),97-100.
[24] 张广,高英,中立型时滞微分方程最终正解的存在性和不存在性,非线性动力学学报,5(增下)(1998),334-335.
[23] 张广,一个猜想的证明, 华北高等职业教育, 11(6)(1998), 17.
[22] G. Zhang and S. S. Cheng, Positive solutions of a nonlinear neutral difference equation, Nonlinear Anal.-TMA, 28(4)(1997), 729-738. SCI收录)(EI收录)
[21] 张广,明亚东,具偏差变元非线性双曲方程的强迫振动,山西大学学报, 20(1)(1997), 28-31.
[20] 高英,张广,具有正负系数中立型时滞微分方程的振动性,工程数学学报, 14(4)(1997), 8-12.
[19] G. Zhang and S. S. Cheng, Note on a functional equation related to the Emden-Fowler equation, Functional Differential Equations, 4(1-2)(1997), 215-221.
[18] S. L. Xie, G. Zhang and S. S. Cheng. Nonexistence of positive solutions of neutral difference equations, Diff. Eq. & Dynamic Systems, 5(1)(1997), 1-11.
[17] G. Zhang and S. S. Cheng, Elementary nonexistence criteria for a recurrence relation, Chinese J. Math., 24(3)(1996), 229-235.
[16] 高英,张广,一类非线性中立型微分方程振动的充分必要条件,山西师大学报,10(2)(1996), 16-19.
[15] W. T. Li and G. Zhang, Oscillation in nonlinear second order differential equations involving integral avereges, J. Gansu Sciences, 8(2)(1996), 21-25.
[14] 张广,高英,非线性二阶差分方程的渐近分类,全国常微分方程稳定性会议(大连海事出版社),大连,1996, pp360-362.
[13] 张广,明亚东,关于振动定理的一点注记,华北高等职业教育, 2(1995
[12] G. Zhang and S. S. Cheng, Oscillation criteria for a neutral difference equation with delay, Appl. Math. Lett., 8(3)(1995), 13-17.
[11] S. S. Cheng and G. Zhang, Nonexistence criteria for positive solutions of a nonlinear recurrence relation, Mathl. Comput. Modelling, 22(2)(1995), 59-66.
[10] S, S. Cheng and G. Zhang, Forced oscillation of a nonlinear recurrence relation, 现代数学与力学(MMM-VI), 苏州, 1995.11, 673-676.
[9] 张广,王幼斌,具“积分小”系数一阶中立型微分方程的振动性,太原重型机械学院, 4(1995), 366-368.
[8] 张广,一类非线性摄动微分方程的振荡定理,山西经济管理学院学报,1995(增), 67-70.
[7] 张广, 高阶非线性泛函微分方程的振动性,大同高专学报, 3(1994), 76-77.
[6] 张广, 一类非线性摄动微分方程的振荡定理,云中大学学报,14(2)(1993), 90-95.
[5] 张广, 高阶非线性中立型多滞量泛函微分方程的振动性,云中大学学报,14(3)(1993), 55-59.
[4] 张广, 关于振动定理的一点注记,雁北师院学报,2(1993), 28-29.
[3] 张广, 某类非线性摄动微分方程的振荡定理,山西师大学报,7(1)(1993), 13-18.
[2] 张广, 一类非线性摄动微分方程的振荡定理,云中大学学报,13(1992),76-79.
[1] 张广, 一类非线性微分方程的振荡定理, 华北高等职业教育,19(1992), 53-55.

二、发表的教学研究论文:

[20] Y. Q. Du, G. Zhang and W. Y. Feng, Existence of positive solutions for a class of nonlinear algebraic systems, Mathematical Problems in Engineering, Mathematical Problems in Engineering, Volume 2016, Article ID **, 7 pages, http://dx.doi.org/10.1155/2016/**
[19] X. F. Li and G. Zhang, Positive Solutions of a General Discrete Dirichlet Boundary Value Problem, Discrete Dynamics in Nature and Society, Volume 2016, Article ID **, 7 pages,
http://dx.doi.org/10.1155/2016/**
[18] G. Zhang, W. Feng and Y. B. Yang, Existence of time periodic solutions for a class of non-resonant discrete wave equations, Advance in Difference Equations, (2015) 2015:120, 1-13, DOI 10.1186/s13662-015-0457-z.
[17] G. Zhang and S. Ge, Existence of positive solutions for a class of discrete Dirichlet boundary value problems, Applied Mathematics Letters, 48 (2015) 1-7.
[16] X. F. Li, G. Zhang and Y. Wang, Existence and uniqueness of positive solitons for a second order difference equation, Discrete Dynamics in Nature and Society, Volume 2014, Article ID 503496, 8 pages, http://dx.doi.org/10.1155/2014/503496.
[15] G. Zhang, L. Bai, Existence of solutions for a nonlinear algebraic system, Discrete Dynamics in Nature and Society, Volume 2009, Article ID 785068, 28 pages.
[14] L. Bai and G. Zhang, Existence of Nontrivial Solutions for A Nonlinear Discrete Elliptic Equation with Periodic Boundary Conditions, Applied Mathematics and Computation, 210(2009), 321-333.
[13] 袁虎廷,王权,张广,关于带周期系数的Bernoulli方程及其较好的离散模型,山西大同大学学报,24(4)(2008)
[12] 张广, 时宝, 三类非线性代数方程系统解的存在性, 海军航空工程学院学报, 233(3)(2008), 55-357.
[11] G. Zhang and S. Stevic, On the difference equation , J. Appl. Math. Computing, 25(1-2)(2007), 269-282.
[10] G. Zhang and W. Feng, On the Number of Positive Solutions of A Nonlinear Algebriac System, Linear Algebra and Its Applications, 422(2-3)(2007), 4040-421.
[9] G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Analysis TMA66(6)(2007), 1410-1416.
[8] H. H. Bin, L. H. Huang and G. Zhang, Convergence and Periodicity of Solutions for a Class of Difference Systems, Advances in Difference Equations, 2006/70461(2006), 1-10.
[7] G. Zhang, Existence of Nontrivial Solutions for Discrete Elliptic Boundary Value Problems, Numerical Methods for Partial Differential Equations, 22(6)(2006), 1479-1488.
[6] 张广, 一类代数方程系统解的存在性, 青岛理工大学学报, 27(5)(2006), 1-7.
[5] Y. M. Wang and G. Zhang, Existence of nontrivial anti-periodic solutions for nonlinear second order difference equations, Far East J. Math. Sci., 32(2)(2006), 145-155.
[4] M. Migda and G. Zhang, On unstable neutral difference equations with “maxima”, Math. Slovaca, 56(3)(2006),
[3] G. Zhang and S. S. Cheng, Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl., 314(1)(2006), 311-319.
[2] 王维平,张广, 剖析一习题所得的几个命题,云中大学学报,13(1992), 88-89.
[1] 张广, 的引深,华北高等职业教育,13(1991), 57-58.

三、出版的著作或教材:

[3] 张广等,偏差分方程及其应用,科学出版社,北京,2018.
[2] 张广、高英, 《差分方程的振动理论》, 高等教育出版社, 2001,12.
[1] 张广等,线性代数方法概论,东南大学出版社,1992.

四、主持或参加的科学研究项目:

[4] 主持在研,周期边界时空离散反应扩散系统的动力学分析,国家自然科学基金面上项目;课题编号:**;申请代码:A010701;资助时限:2014年1月1日—2017年12月31日.
[3] 主持“一类控制模型的定性分析”,山西省自然基金资助,课题编号**,2001,1-2003,12.
[2] 第二参与“一类泛函微分方程的振动理论”,山西省高科技开发项目,课题编号**,2002,1-2004,12
[1] 主要参与者,“偏差分方程的定性分析”智利国家自然基金国际合作项目,课题负责人Universidad de Los Lagos的R. Medina教授,参与者:郑穗生和张广,资助金额10万US¥,时间:2000-2003

五、主持或参加的教学研究项目:

[1] 主持在研,普通高校基础类学科专业人才分类培养的探索与实践----以天津商业大学数学类专业为例,天津商业大学,2015.6-2017.6.

六、获奖情况:

[6] 第一完成人“一类控制模型的定性分析”获山西省科技进步二等奖,2003.
[5] 第一完成人“一类控制模型的定性分析”获山西省教委科技进步一等奖,2002.
[4] 第一完成人“一类差分方程的正解”获山西省优秀论文一等奖,2002.
[3] 第二完成人 “一类泛函微分方程和差分方程的振动性”获山西省优秀论文三等奖,2002.
[2] 第一完成人“一类泛函微分方程和差分方程的振动性”获山西省科技进步三等奖,1999.
[1] 第一完成人“一类泛函微分方程和差分方程的振动性”获大同市科技进步一等奖,1998.

七、获得荣誉称号情况:

[6] 山西省五一劳动奖章二等奖,1999.
[5] 大同市优秀党员,1998.
[4] 山西省模范教师,1998.
[3] 大同市十大****提名奖,1997.
[2] 大同市青年科技标兵,1995.
[1] 大同市教育系统优秀教师,1986.

相关话题/中国民航大学 理学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 天津商业大学理学院导师教师师资介绍简介-程伟
    姓名:程伟职务:教师职称:教授学历:理学硕士研究方向:应用泛函分析、数学教育一、发表的科学研究论文:(1)算子方程Tx=y近似解的误差估计.天津理工大学学报,2006.12(2)Banach空间中广义特征函数的性质及应用.天津商学院学报,2006.11(3)油气田开发规划模型的建立与求解.大庆石油学 ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-李天
    姓名:李天职务:国际交流处副处长、台港澳事务办公室副主任职称:副教授学历:本科学位:理学学士研究方向:随机过程一、发表的科学研究论文:1.随机模拟应用于积分计算的利用辅助随机变量的分部密度法,独立完成,河北工业大学学报,2013(5)2.n个平稳随机过程之和为平稳过程一个充分条件及其应用,独立完成, ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-梁邦助
    姓名:梁邦助职称:副教授学历:硕士研究方向:数理统计,数学教学一、发表的科学研究论文:1.教学质量评价中的统计方法,天津商学院学报,2002.V0L.6,2.多元统计方法在教学质量评价中的应用,天津工业大学学报,2003.Vol.3.3.某步进链轮设备的误差分析和仿真,计算机仿真,2004.8二、出 ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-陈新立
    姓名:陈新立职务:职称(硕博导师):讲师学历:硕士研究生研究方向:李群李代数一、发表的科学研究论文:·特征值反问题的唯一性,高等数学研究,2016,19(1)·AnewproofofatheoremofH.C.Wang,BalkanJournalofGeometryandItsApplication ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-李美凤
    姓名:李美凤职务:经管类高等数学课程负责人职称(硕博导师):副教授学历:硕士研究生研究方向:微分方程的数值求解,离散动力系统的稳定性分析和分支理论一、发表的科学研究论文:1.Diffusion-driveninstabilityandwavepatternsofLestie-Gowercompeti ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-解锐
    姓名:解锐职务:讲师职称(硕博导师):学历:博士研究方向:逼近论,函数空间理论一、发表的科学研究论文:(1)RuiXie,ChuanyiZhang,Spaceof-periodiclimitfunctionsanditsapplicationstoanabstractCauchyproblem,Jo ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-买凤霞
    研究方向:管理科学与工程,供应链管理,动力系统研究工作经历·1999年-2003年,湖南大学数学与计量经济学院,信息与计算科学专业;·2003-2006年,南开大学数学所(免试推荐),应用数学专业;·2006年-2008今,天津商业大学数学系,助教;·2008-至今,天津商业大学数学系,讲师;·20 ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-孟丽丽
    姓名:孟丽丽职务:无职称(硕博导师):副教授学历:硕士研究方向:应用数学一、发表的科学研究论文:(1)Bifurcation,Chaos,andPatternFormationfortheDiscretePredator-PreyReaction-DiffusionModel.2019.discre ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-秦书琳
    姓名:秦书琳职称(硕博导师):讲师学历:博士研究方向:分布参数系统的控制理论一、发表的科学研究论文:(1).ShulinQinandGengshengWang,Controllabilityofimpulsecontrolledsystemsofheatequationscoupledbyconst ...
    本站小编 Free考研考试 2020-10-06
  • 天津商业大学理学院导师教师师资介绍简介-李晶洁
    姓名:李晶洁职务:数学系秘书职称(硕博导师):讲师学历:博士研究方向:随机微分方程的参数估计及其金融模型,环境信用评价一、发表的科学研究论文:1.JingjieLi,Jiang-lunWuandGuangZhang.Estimationofintrinsicgrowthfactorsinaclass ...
    本站小编 Free考研考试 2020-10-06