删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西安交通大学航天航空学院导师教师师资介绍简介-刘 Liu Zishun 子顺

本站小编 Free考研考试/2021-06-27

首页 - 刘 Liu Zishun 子顺基本信息

Int. Journal of Applied Mechanics (IJAM) 2008-至今 主编
Int. Journal of Computational Materials Science and Engineering(IJCMSE) 2011-至今 主编
Journal of Mechanics of Material and Structures(JoMMS) 2018-至今 编辑(Editor)
Journal of Applied and Computational Mechanics 2017-至今 副主编
Acta Mechanica Solida Sinica 2015-2020 特邀副主编,2020-至今 编委
Special issue of Computational Materials Science 特刊主编(2010)
Special issue of Structural Engineering and Mechanics 特刊主编(2014)
Int. Journal of Structural Stability and Dynamics (IJSSD)2017-至今编委
Coupled System Mechanics (CSM)2017-至今 编委
Acta Mechanica Sinica (AMS) 2020-至今 编委
Int. Journal of Computational Method (IJCM)2009-至今 编委
Int. Association of Applied Mechanics (IAAM)秘书长
应用力学学报(中国) 2007-至今 编委
新加坡计算力学学会 荣誉主席

刘子顺 教授 博士生导师 西安交通大学****,陕西省三秦****,西安交通大学国际应用力学中心(ICAM)执行主任。
新加坡国立大学(NUS),新加坡高性能计算研究院(IHPC)兼职教授。




招生信息






联系方式
电子邮箱:zishunliu@mail.xjtu.edu.cn
zishunliu@nus.edu.sg
电话: +86-
地址: 陕西省西安市咸宁西路28号西安交通大学国际应用力学中心
邮编:710049




时间




欢迎来访




工作简历
2012年7月至今,担任西安交通大学教授,国际应用力学中心执行主任。
2005年4月至2012年7月担任IHPC固体力学研究部门副主任,工程力学研究部门主任,软物质研究部门主任。
作为访问科学家分别在2005年在德国马克斯普朗克金属研究所、2006年和2008年在英国格拉斯哥大学做研究工作。
1999年5月至2012年7月历任新加坡高性能计算研究院 (IHPC, A*STAR) 高级研究工程师(Senior Research Engineer), 研究科学家(Research Scientist),高级科学家 (Senior Scientist)。
1997年4月至1999年5月在新加坡特许工业任工程师。
1994年8月至1996年3月历任新加坡国立大学研究**** (Research Scholar), 研究助理 (Research Assistant) 。
1986年3月至1994年8月历任西安交通大学助教, 讲师, 副教授。




教育经历

教育经历
新加坡国立大学 固体力学 Ph. D
新加坡国立大学 固体力学 M. Eng
西安交通大学 固体力学 M. Eng
西安交通大学 应用力学 B. Eng




了解更多
类别/站点
Liu
ICAM
IJAM
IJCMSE
SACM
IAAM
Frontiers in Applied Mechanics





首页 - 刘 Liu Zishun 子顺基本信息

Int. Journal of Applied Mechanics (IJAM) 2008-至今 主编
Int. Journal of Computational Materials Science and Engineering(IJCMSE) 2011-至今 主编
Journal of Mechanics of Material and Structures(JoMMS) 2018-至今 编辑(Editor)
Journal of Applied and Computational Mechanics 2017-至今 副主编
Acta Mechanica Solida Sinica 2015-2020 特邀副主编,2020-至今 编委
Special issue of Computational Materials Science 特刊主编(2010)
Special issue of Structural Engineering and Mechanics 特刊主编(2014)
Int. Journal of Structural Stability and Dynamics (IJSSD)2017-至今编委
Coupled System Mechanics (CSM)2017-至今 编委
Acta Mechanica Sinica (AMS) 2020-至今 编委
Int. Journal of Computational Method (IJCM)2009-至今 编委
Int. Association of Applied Mechanics (IAAM)秘书长
应用力学学报(中国) 2007-至今 编委
新加坡计算力学学会 荣誉主席

刘子顺 教授 博士生导师 西安交通大学****,陕西省三秦****,西安交通大学国际应用力学中心(ICAM)执行主任。
新加坡国立大学(NUS),新加坡高性能计算研究院(IHPC)兼职教授。




招生信息






联系方式
电子邮箱:zishunliu@mail.xjtu.edu.cn
zishunliu@nus.edu.sg
电话: +86-
地址: 陕西省西安市咸宁西路28号西安交通大学国际应用力学中心
邮编:710049




时间




欢迎来访




工作简历
2012年7月至今,担任西安交通大学教授,国际应用力学中心执行主任。
2005年4月至2012年7月担任IHPC固体力学研究部门副主任,工程力学研究部门主任,软物质研究部门主任。
作为访问科学家分别在2005年在德国马克斯普朗克金属研究所、2006年和2008年在英国格拉斯哥大学做研究工作。
1999年5月至2012年7月历任新加坡高性能计算研究院 (IHPC, A*STAR) 高级研究工程师(Senior Research Engineer), 研究科学家(Research Scientist),高级科学家 (Senior Scientist)。
1997年4月至1999年5月在新加坡特许工业任工程师。
1994年8月至1996年3月历任新加坡国立大学研究**** (Research Scholar), 研究助理 (Research Assistant) 。
1986年3月至1994年8月历任西安交通大学助教, 讲师, 副教授。




教育经历

教育经历
新加坡国立大学 固体力学 Ph. D
新加坡国立大学 固体力学 M. Eng
西安交通大学 固体力学 M. Eng
西安交通大学 应用力学 B. Eng




了解更多
类别/站点
Liu
ICAM
IJAM
IJCMSE
SACM
IAAM
Frontiers in Applied Mechanics





研究领域 - 刘 Liu Zishun 子顺研究领域
研究领域
主要研究方向有软物质力学、计算固体及生物力学、纳米力学、纳米压痕与材料表征、振动声学与振动系统。已在国际期刊杂志及国际会议发表论文一百多篇,其中发表在Int. J. of Solids and Structures 上的论文被评为”IJSS 2005-2008 年引用率最高作者奖”。并且作为课题负责人完成科研项目近百项,2010年所负责完成的科研项目得到新加坡科技研究局高性能计算研究院的最佳项目奖。




神奇的水凝胶
水凝胶-软基质体系的相互作用机理研究
自从人类开始从信息时代迈入智能时代,人工智能和生物医学等技术正在成为本世纪科学研究的主旋律。在此基础上,智能机器人技术在未来将会渗透进人类生活的方方面面,并且使人类与机器的界限越来越模糊,机器与人体的结合在可预见的未来是一个必然的趋势。这种趋势会促进医疗领域的个性化,柔性器件的普及化,可穿戴设备的商用化等。因此,在未来机器不再是冰冷的金属机械结构,它可能会成为粘附在我们身体上,甚至是长在我们器官上的软机器。人体器官(例如大脑,脊髓,心脏,肌肉和皮肤等)大多与水凝胶有相似的力学和化学特性,它们柔软且富含水分。而目前常见的电子器件和产品大多有金属、硅、陶瓷、玻璃和工程塑料组成,它们坚硬易碎且无法与生物体直接相容。因此,寻找且优化一种可以胜任人体与各种电子器件交互的材料成为最前沿的课题之一。长期,稳定和高效的人机界面有可能带来前所未有的颠覆性革命。
麻省理工学院的赵选贺课题组在2019年发表的综述(Yuk et al,.2019)中阐明,水凝胶是唯一一种可能成为人机交互作用界面的材料的,并提出水凝胶生物电子学的概念。目前,该方向的应用主要分为4个子方面:1)水凝胶封装技术,包括涂层与胶囊化;2)离子导电水凝胶的力学和电学特性;3)导电纳米复合水凝胶;4)导电聚合物水凝胶。以上研究都包含水凝胶表面与另外一种基质的相互作用,涉及断裂韧性,界面强度,导电特性和生物相容性等诸多问题。本课题组主要专注于基于以上现实应用的底层机理,发展更新更实用的水凝胶本构理论,水凝胶-软基质界面和断裂理论,为实际的工程应用提供理论支持。

水凝胶在实际应用过程中会经常伴随着吸水和失水的过程,我们对这一动态过程进行了理论研究,推导出了均质水凝胶随时间响应理论解。该理论可以适用于不同响应下的情况。响应可包括化学势,温度,静水压等等。

水凝胶可能要应用于各种变化多端的环境,因此含水量一定会随着环境的变化而变化。我们发现水凝胶的模量和硬度会随着含水量的改变而发生剧烈变化。我们惊奇的发现,水凝胶的杨氏模量与其含水量满足幂率关系。并且在失水和吸水两种过程中满足不同的标度率。并且不同类型的水凝胶,标度率是不同的,但是依然有普适性。



利用水凝胶大变形理论解释一些奇妙的自然现象
自然界充满了神奇,我们生长在这个奇妙的世界中。自然界动植物的生长充满了迷人的复杂模式和形状。人们观察到植物的生长过程可产生各种有趣而复杂的三维形状:如正螺旋形和反螺旋形的仙人掌,园型仙人掌上的肋骨可呈现出平行四边形图形,南瓜表面会出现复杂的脊谷图貌。而松树锥和向日葵头的图案又显示出交叉的螺旋形状。达尔文曾经说过, “迷人的植物图案可以驱使人具有疯狂想象”。人们可能会问自然界生物为何长得如此奇妙?自然植物为何生长的千奇百怪?为什么圆形南瓜有十个等距纵脊,而另一种长南瓜约有二十个纵脊?为什么一个哈密瓜表面呈现出网状混合山脊和明显的纬度形态模式?人们虽然早就认识到植物叶子和花瓣是由不同模式的图形组成,或呈现出对称或反对称螺旋图型,这些自然结构形成的物理机制和变形机制是什么?如何解释形态的发生与这些植物的自然生长?我们如何理解这些表面形貌与基因的关系?这些问题一直困扰着许许多多的研究者。近一个世纪来,科学家都试图用各种各样的理论、方法来解释这些现象。一个最简单而普遍答案可能是,力产生的变形及屈曲是造成这些模式形成的主要原因,在动植物生长过程中动植物的总势能总是趋于最小化,它可能是动植物进化时表面出现褶皱变形的成因。另外一些研究人员认为化学和生物物理学是某些植物和动物的形态形成的主因,例如,生长激素作为化学信号及成长的动力作为物理信号可影响植物顶端材料使其产生不同的植物形态。虽然答案尚不完全清楚,但是人们试图利用力学原理解释这些奇妙现象的努力从未停止。
例如早在上个世纪90年代,著名力学家斯坦福大学Charles R. Steele教授和他的研究组就通过实验研究、理论分析和仿真模拟来证明机械应力和变形在植物模式变形中起着关键的作用。他们尝试用弹性梁、板、壳结构来解释某些自然现象。但是,他们所用的材料主要是工程材料,其材料的弹性本构关系是线弹性。实际上植物及生物界的材料特性不同于一般工程材料。虽然他们对某些动植物的形态做出来某些解释,但这种解释并不是非常合适的。由于凝胶材料同动植物材料相似,都含有大量的液体,并且凝胶的溶胀与动植物早期生长的过程类似。所以利用凝胶材料来代替工程材料可能是一种更好的选择。近年来,随着软物质力学的快速发展,水凝胶变形的本构理论和模拟水凝胶变形的数值方法取得了巨大的突破。我们(西安交通大学刘子顺研究组)借助于水凝胶非均质大变形的理论,发现自然界中许多有趣现象可以用水凝胶大变形理论及扩散理论得到很好的解释和模拟。例如我们利用凝胶状溶胀变形研究了树叶的生长和枯萎过程(Liu et al., 2010),模拟结果同实际生长变形过程吻合较好。我们还利用结构的稳定屈曲理论揭示了水果生长时由于屈曲变形产生的奇妙形状( Liu et al., 2012; Chen et al., 2014;),此研究中我们利用化学势的变化来模拟水果生长的生长过程。利用凝胶圆环结构的溶胀过程中产生的屈曲现象来解释一些花环的产生(Zhang et al., 2014),揭示了甘蓝花形成的奇妙现象等等(如图1所示)。比如,南瓜在生长的过程中会在头部产生屈曲,形成瓣状,我们利用水凝胶在受约束的条件下进行吸水的过程同这一现象进行比拟,结果发现,在水凝胶吸水溶胀过程中也会产生相同的屈曲的现象,此模拟过程可以解释一些瓜果的形态(如图2所示)。通过生涩期到成熟期的化学势变化改变以及边界条件的施加,我们进一步模拟了苹果和辣椒的生长过程。三种不同脉络结构的叶子的干燥过程以及圆环板形状的卷心菜屈曲都进行了研究(如图3所示)。即在凝胶非均匀场理论基础上从力学角度说明水果和植物的纹路生长形态。不仅如此,我们也希望利用水凝胶的大变形理论来解释一些动物体的生长现象,为生命科学提供力学理论支持,例如利用水凝胶代替人工关节等。
因此力学应用无处不在,水凝胶非均匀场理论可用来更加合理解释一些动植物的生长过程及一些自然现象。无论从工程应用和科学研究方面看,软物质力学的研究将具有极大的应用前景。
图1 自然界中奇妙的生长现象。(a) 树叶的生长;(b)树叶的枯萎;(c)南瓜的瓣状;(d)花环的产生
图2 水凝胶大变形理论对于自然现象的模拟。(a)树叶的吸水;(b)树叶的失水;(b)南瓜的生长;(d)花环的产生。
图3 通过凝胶材料模拟蔬果植物的生长形态
新型形状记忆聚合物支架的评估及其力学行为的研究
当前,心血管疾病已成为世界范围内第一位死亡原因。将血管支架引入狭窄的血管腔使其血液重新恢复正常流动,是目前治疗心血管疾病的一个重要手段。在临床中,医学应用支架的材料多为不锈钢、镍钛合金或钴铬合金。金属支架与血管壁的接触会引起内膜增生使血管发生再狭窄。形状记忆聚合物作为一种新型智能材料,其可以在受到合适的刺激后由一种暂时形态恢复到初始形态,具有优越的大变形特性、良好的生物相容性、生物可降解性等。此优异的特性为形状记忆聚合物材料替代传统金属材料进入人体进行工作,例如形状记忆聚合物支架,提供了良好的发展前景。
西安交通大学刘子顺研究组同英国格拉斯哥大学研究组合作,建立了形状记忆聚合物大变形本构方程,并设计出大径向支撑强度支架结构,从计算和模拟角度证明了形状记忆聚合物支架的可行性。
该成果发表在《Engineering Computations》上。第一作者是西安交通大学航天航空学院博士研究生刘若璇,通讯作者是刘子顺教授,合作者有格拉斯哥大学Sean Mcginty博士, Xiaoyu Luo教授及新加坡高性能计算研究所Fangsen Cui博士。


Chen, L., Zhang, Y., Swaddiwudhipong, S., Liu, Z., 2014. Mimicking The Pattern Formation Of Fruits And Leaves Using Gel Materials. Structural Engineering & Mechanics 50, 575-588.
Liu, Z., Hong, W., Suo, Z., Swaddiwudhipong, S., Zhang, Y., 2010. Modeling And Simulation Of Buckling Of Polymeric Membrane Thin Film Gel. Computational Materials Science 49, S60-S64.
Liu, Z., Swaddiwudhipong, S., Hong, W., 2012. Pattern Formation In Plants Via Instability Theory Of Hydrogels. Soft Matter 9, 577-587.
Zhang, Y., Chen, L., Swaddiwudhipong, S., Liu, Z., 2014. Buckling Deformation Of Annular Plates Describing Natural Forms. International Journal of Structural Stability & Dynamics 14, **-.




软物质力学
水凝胶多孔结构的模式转变


植物的叶序与凝胶力学
凝胶动力学
水凝胶的应用







计算固体与生物力学


人类打鼾声音的研究
全膝关节组件中的应力等值线




纳米力学
石墨烯的分子动力学模拟
石墨烯的各向异性泊松比

石墨烯的自发卷曲与自组装行为

分子动力学研究:导热系数





纳米压痕与材料表征





振动声学与振动系统的结构强度















软物质力学 - 刘 Liu Zishun 子顺软物质力学
水凝胶多孔结构的模式转变


植物的叶序与凝胶力学
凝胶动力学
水凝胶的应用










计算固体及生物力学 - 刘 Liu Zishun 子顺计算固体与生物力学


人类打鼾声音的研究
全膝关节组件中的应力等值线







纳米力学 - 刘 Liu Zishun 子顺纳米力学
石墨烯的分子动力学模拟
石墨烯的各向异性泊松比

石墨烯的自发卷曲与自组装行为

分子动力学研究:导热系数








纳米压痕与材料表征 - 刘 Liu Zishun 子顺纳米压痕与材料表征








振动声学与振动系统的结构强度 - 刘 Liu Zishun 子顺振动声学与振动系统的结构强度










发表论文 - 刘 Liu Zishun 子顺期刊论文

期刊论文:
2021:
Zheng S.J. and Liu Z.S. (2021), The Machine Learning Embedded Method of Parameters Determination in the Constitutional Models and Potential Applications for Hydrogels, International Journal of Applied Mechanics, Vol. 13(1), **. DOI: S**00010. pdf
Vengatachalam B., Huang R., Poh L.H., Liu Z.S., Qin Q.H. and Swaddiwudhipong S. (2021), Initial yield behaviour of closed-cell aluminium foams in biaxial loading, International Journal of Mechanical Sciences, Vol. 191, 106063. DOI: 10.1016/j.ijmecsci.2020.106063.
Lei J.C., Li Z.Q., Xu S. and Liu Z.S. (2021), Recent Advances of Hydrogel Network Models for Studies on Mechanical Behaviors, Acta Mechanica Sinica, Vol. 37. DOI: 10.1007/s10409-021-01058-2. pdf
Jia Y.R., Han L.Z., Lei J.C. and Liu Z.S. (2021), Study on the Equivalent Properties of Nonlinear Periodic Heterogeneous Composite Plates Using the Structural Genome Approach, 利用结构基因法研究非线性周期性板结构的等效力学性能《计算力学学报》Chinese Journal of Computational Mechanics, Vol. 37, DOI: 10.7511/jslx. (Accepted)
Han L.Z., Lei J.C., Liu Z.S. and Lee H.P. (2021), Prediction of Mechanical and Thermal Properties of Particle Reinforced Hydrogel Composites Using THE Structural Genome Approach, Int. Journal of Computational Materials Science and Engineering, Vol. 10(1). (Accepted)
2020:
Lei J.C., Xu S., Li Z.Q. and Liu Z.S., (2020), Study on Large Deformation Behavior of Polyacrylamide Hydrogel Using Dissipative Particle Dynamics, Frontiers in Chemistry,Vol. 8: 115, doi: 10.3389/fchem.2020.00115.
Toh W., Ang Elisa Y.M., Ng T.Y., Lin R.M., Liu Z.S., (2020), Nanopumping of Water via Rotation of Graphene Nanoribbons, Nanotechnology. Vol. 31(17),. 175704,DOI: 10.1088/1361-6528/ab6ab6.
Selim B. A., Liu Z.S. and Liew K.M. (2020), Active control of functionally graded CNT-reinforced composite plates with piezoelectric layers subjected to impact loading, Journal of Vibration and Control, Vol. 26(7-8), 581-598, DOI: 10.1177/89849 .
Li Z.Q., Liu Z.S., Ng T.Y., Sharma P. (2020) The effect of water content on the elastic modulus and fracture energy of hydrogel Article reference, Extreme Mechanics Letters, Vol.35, 100617 DOI: 10.1016/j.eml.2019.100617.
Huang R., Zheng S.J. L, Liu Z.S. and Ng T.Y., (2020), Recent Advances of the Constitutive Models of Smart Materials- Hydrogels and Shape Memory Polymers, International Journal of Applied Mechanics, Vol. 12(2), **.DOI: 10.1142/S**00143.(pdf).
Ang Y.M., Ng T.Y., Yeo J.J., Lin R.M., Liu Z.S. and Geethalakshmi, K. R. (2020), Investigations on Different Two-Dimensional Materials as Slit Membranes for Enhanced Desalination, Journal of Membrane Science, Vol.598, 117653. DOI: 10.1016/j.memsci.2019.117653.
Toh W., Ang Elisa Y.M., Yeo J.J., Lin R.M., Liu Z.S., Geethalakshmi, K. R., Ng T.Y. (2020), A Review on Low dimensional Carbon Desalination and Gas Separation Membrane Designs, Journal of Membrane Science, Vol. 598, 117785. DOI: 10.1016/j.memsci.2019.117785.
Liu R.X., Xu S., Luo X.Y. and Liu Z.S., (2020), Theoretical and numerical analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent, Polymers, Vol.12(8), 1784. DOI:10.3390/polym**.
Wang L.F., Feng P.H., Wu Y. and Liu Z.S., (2020), A temperature-dependent model of shape memory alloys considering tensile-compressive asymmetry and the ratchetting effect, Materials, Vol.13, 3116. DOI: 10.3390/ma**.
Xu S. and Liu Z.S., (2020), Coupled theory for transient responses of conductive hydrogels with multi-stimuli, Journal of the Mechanics and Physics of Solids, Vol. 143, 104055. DOI: 10.1016/j.jmps.2020.104055.
Li Z.Q. and Liu Z.S., (2020), The elongation-criterion for fracture toughness of hydrogels based on percolation model, Journal of Applied Physics, Vol.127(21) 215101, DOI: 10.1063/5.**.
Li Y.X., Liu R.X., Liu Z.S. and Swaddiwudhipong S., (2020), 3D phase-evolution-based thermomechanical constitutive model of shape memory polymer with finite element implementation, Journal of Mechanics of Materials and Structures, Vol. 15(3), 291-306. DOI: 10.2140/jomms.2020.15.291.
Huang R., Xue Y.H., Li Z.J. and Liu Z.S., (2020), The programmable spiral and helical deformation behaviors of the hydrogel-based bi-material beam structures, International Journal of Structural Stability and Dynamics, Vol. 20(13) article No. **. DOI: 10.1142/S02**102.
Sha Z.D., Lin W.H., Poh L.H., Xing G.C., Liu Z.S., Wang T.J., Gao H.J. (2020), Fatigue of metallic glasses, Applied Mechanics Reviews, Vol.72(5), 050801 DOI: 10.1115/1.**.
Toh W., Ang Elisa Y.M., Ng T.Y. Lin R.M. and Liu Z.S. (2020), An investigation on the effects of nanoplastic particles on nanoporous graphene membrane desalination, Desalination, Vol. 496, 114765, DOI: 10.1016/j.desal.2020.114765.
Zhang B.J., Zhang Y.Y., Yang X.D., Li G.P., Zhang S.K., Zhang Y.F., Liu Z.S. He G. (2020), Isometric Thionated Naphthalene Diimides As Organic Cathodes for High Capacity Lithium Batteries, Chemistry of Materials, Vol.32(24), 10575–10583.
2019:
Aphinyan S. Ang Elisa Y.M., Yeo, J.J., Ng, T.Y., Lin, R.M., Liu, Z.S., Rangaswamy G. K. (2019), Many-Body Dissipative Particle Dynamics Simulations of Nano-Droplet Formation in 3D Nano-Inkjet Printing, Modelling and Simulation in Materials Science and Engineering,Vol.27 (5), 055005. DOI: 10.1088/1361-651X/ab1d43.
Xie Cihang, Ying Wu and Liu Z.S., (2019), Stress Fields and Effective Modulus of Piezoelectric Fiber Composite with Arbitrary Shaped Inclusion under In-plane Mechanical and Anti-plane Electric Loadings, Mathematics and Mechanics of Solids, DOI: 10.1177/40685.
Zheng S.J., Li Z.Q. and Liu Z.S., (2019), The Inhomogeneous Diffusion of Chemically Crosslinked Polyacrylamide Hydrogel Based on Poroviscosity Theory, Science China Technological Sciences, DOI: 10.1007/s11431-018-9472-2.
Xu S and Liu Z.S., (2019), A nonequilibrium thermodynamics approach to the transient properties of hydrogels, Journal of the Mechanics and Physics of Solids, Vol. 127, 94-110. DOI 10.1016/j.jmps.2019.03.008.
Rangaswamy G. K., Ang Elisa Y.M., Yeo, J.J., Lin R.M., NG T.Y., and Liu Z.S., (2019), Carbon Nanotube Arrays as Multilayer Transverse Flow Carbon Nanotube Membrane for Efficient Desalination, Journal of Membrane Science, V581, 383-392.
Wang Y., Lei J.C. and Liu Z.S., (2019), Molecular Dynamics Study on the Anisotropic Poisson's Ratio of the Graphene,Diamond and Related Materials,Vol.93, 66-74. 10.1016/j.diamond.2019.01.026.
Liu R.X., McGinty S., Cui F.S., Luo X.Y., Liu Z.S., (2019), Modelling and Simulation of the Expansion of a Shape Memory Polymer Stent, Engineering Computations, DOI 10.1108/EC-10-2018-0462.
Liu R.X., Li Y.X. and Liu Z.S., (2019), Experimental study on thermo-mechanical behavior of a thermosetting shape memory polymer. Mechanics of Time-Dependent Materials, Vol.23. DOI: 10.1007/s11043-018-9377-0. [PDF]
Pan Z.Z., Huang R. and Liu Z.S., (2019), Prediction of the thermomechanical behavior of particle reinforced shape memory polymers. Polymer Composites,40(1), 353-363. DOI: 10.1002/pc.24658.[PDF]
Zhou Y., Hu J.Y. and Liu Z.S., (2019), Deformation Behavior of Fiber-Reinforced Hydrogel Structures, International Journal of Structural Stability and Dynamics, Vol.19, No.3, **. DOI: 10.1142/S02**329.
Ang Elisa Y. M., Ng T.Y., Liu Z.S. Lin R.M., Yeo J.J. and Rangaswamy K. (2019), Effects of Oscillating Pressure on Desalination Performance of Transverse Flow CNT Membrane. Desalination, Vol.451 35-44. DOI: 10.1016/j.desal.2018.03.029.[PDF]
Yang X.D., Zhang B.J., Zhang S.K., Li G.P., Xu L.T., Wang Z.J., Li P.F., Zhang Y.F., Liu Z.S. and He G. (2019), The Marriage of Carborane with Chalcogen Atoms: Non-Conjugation, σ-π Conjugation and Intramolecular Charge Transfer,Organic Letters, (Accepted).
Wang L.F., Feng P.H., Wu Y. and Liu Z.S. (2019), A tensile-compressive asymmetry model for shape memory alloys with a redefined martensite internal variable,Smart Materials and Structures, (Accepted).
Li Z.J., Huang R. and Liu Z.S. (2019), A Periodic Deformation Mechanism of a Soft Actuator for Crawling and Grasping,Advanced Materials Technologies, DOI: 10.1002/admt..
Selim B. A., Liu Z.S. and Liew K.M. (2019), Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers,Thin-Walled Structures, Vol. 145,106372. DOI:10.1016/j.tws.2019.106372.
Wang Y., Lei J.C., Bai L.C., Zhou K. and Liu Z.S., (2019), Effects of Tensile Strain Rate and Grain Size on the Mechanical Properties of Nanocrystalline T-carbon,Computational Materials Science, Vol. 170, 109188.
Zheng S.J. and Liu Z.S., (2019), Constitutive Model of Salt Concentration Sensitive Hydrogel,Mechanics of Materials, Vol. 136, 103092. DOI: 10.1016/j.mechmat.2019.103092.
Vengatachalam B., Poh L.H., Liu Z.S., Qin Q.H., Swaddiwudhipong S., (2019), Three dimensional modelling of closed-cell aluminium foams with predictive macroscopic behaviour,Mechanics of Materials, Vol. 136, UNSP 103067. DOI: 10.1016/j.mechmat.2019.103067.
Wang L.F., Wu Y. and Liu Z.S., (2019), Theoretical analysis on the adaptive vibration attenuation of a fixed-fixed beam realized by a piezo-SMA ferrule,Journal of Intelligent Material Systems and Structures, Vol. 30(14), 2079-2090. DOI: 10.1177/**X**.
Xie C.H. Wu Y. and Liu Z.S., (2019), A new approach for electro-elastic analysis of piezoelectric fiber composites with arbitrary shaped inclusions under anti-plane shear and in-plane electric loadings,Smart Materials and Structures, Vol. 28(7), 075030. DOI: 10.1088/1361-665X/ab1cf7.
Lei J.C., Zhou Z.D. and Liu Z.S. (2019), Side Chains and the Insufficient Lubrication of Water in Polyacrylamide Hydrogel - A New Insight, Polymers, Vol. 11, 1845, doi:10.3390/polym**.
Li Z.Q. and Liu Z.S. (2019), Energy transfer speed of polymer network and its scaling-law of elastic modulus-New insights, Journal of Applied Physics, Vol.126(21) 215101, DOI: 10.1063/1.** .
Jia Y.R., Lei J.C., Liu Z.S. and Lee H.P. (2019), Determination of the Equivalent Properties of Periodic Heterogeneous Composite Plates Using the Structural Genome Approach, Int. Journal of Computational Materials Science and Engineering, Vol. 8(4), **, DOI: 10.1142/S00179.

2018:

Pan Z.Z., Zhou Y., Zhang N. and Liu Z.S., (2018), A Modified Phase-based Constitutive Model for Shape Memory Polymers, Polymer International, Vol.67 (12), 1677-1683. DOI: 10.1002/pi.5698.[PDF]
Xu S., Cai S.Q. and Liu Z.S., (2018), Thermal Conductivity of Polyacrylamide Hydrogel at Nanoscale, ACS Applied Materials & Interfaces, Vol.10(42), 36352-36360. DOI: 10.1021/acsami.8b09891.[PDF]
Li Y.X., Liu R.X. and Liu Z.S., (2018), The Dynamic Behaviors of a Shape Memory Polymer Membrane, Acta Mechanica Solida Sinica, Vol.31 (5), 635-651. DOI: 10.1007/s10338-018-0042-6.[PDF]
Zhang N., Pan Z.Z., Lei J.C. and Liu Z.S., (2018), Effects of Temperature on Fracture and Fatigue Damage of Temperature Sensitive Hydrogels, RSC Advances, Vol.8,31048-31054. DOI: 10.1039/c8ra06518g.[PDF]
Bai, L.C., Sun P.P., Liu B., Liu Z.S. and Zhou K., (2018), Mechanical behaviors of T-carbon: A molecular dynamics study, Carbon, Vol.138, 357-362.[PDF]
He Y.H., Zhou Y., Liu Z.S. and Liew K.M., (2018), Buckling and pattern transformation of modified periodic lattice structures, Extreme Mechanics Letters, Vol.22, 112–121, DOI: 10.1016/j.eml.2018.05.011.[PDF]
Pan Z.Z. and Liu Z.S., (2018), A novel fractional viscoelastic constitutive model for shape memory polymers, The Journal of Polymer Science Part B: Polymer Physics, Vol.56, 1125–1134. DOI: 10.1002/polb.**.[PDF]
Xie C.H., Wu Y. and Liu Z.S., (2018), Modeling and active vibration control of lattice grid beam with piezoelectric fiber composite using fractional order PDμ algorithm, Composite Structures, Vol.198, 126–134.[PDF]
Lei J.C. and Liu Z.S., (2018), A novel model for the mechanical properties of silica aerogels,Journal of Applied Physics,Vol.123, 025102, DOI: 10.1063/1.**.
Wang YR, Huang R. and Liu Z.S. (2018), Using Structural Intensity Approach to Characterize Vibro-acoustic Behavior of the Cylindrical Shell Structure, Coupled Systems Mechanics, Vol.7 (3), 297-319.
Li Y.X. and Liu Z.S., (2018), A Novel Constitutive Model of Shape Memory Polymers Combining Phase Transition and Viscoelasticity, Polymer, Vol.143, 298-308. DOI: 10.1016/j.polymer.2018.04.026.[PDF]
Ang Elisa Y. M., Ng T.Y., Lin R.M., Yeo J.J., Liu Z.S. and Rangaswamy K., (2018), Effects of CNT size on desalination performance of outer-wall CNT slit membrane, Physical Chemistry Chemical Physics, Vol.20 (20), 13896-13902, DOI: 10.1039/C8CP01191E.[PDF]
Zhang N., Zheng S.J., Pan Z.Z. and Liu Z.S., (2018), Phase Transition Effects on Mechanical Properties of NIPA Hydrogel, Polymers, Vol.10 (4), 358.[PDF]
Liu Z., Ng T.Y. and Liu Z.S.,(2018), Preface: Advances in computational aerospace materials science and engineerin. Int. J. Computational Materials Science and Engineering, Vol.7(1), **.[PDF]
Du X.Y., Huang R., Vengatachalam B. and Liu Z.S., (2018), Vibration Control for Slotted Plate Using Structural Intensity Method. Int. J. Computational Materials Science and Engineering, Vol.7 (1), **.[PDF]
Wang Y. and Liu Z.S., (2018), Spontaneous Rolling-up and Assembly of Graphene by Designing with Defects,Nanoscale, 2018, 10 (14), 6487–6495.[PDF]
Hu J.Y., Zhou Y. and Liu Z.S., (2018), The Friction Effect on Buckling Behavior of Cellular Structures under Axial Load, International Journal of Applied Mechanics, Vol.10 (2), **.[PDF]
Zheng S.J., Li Z.Q. and Liu Z.S., (2018), The fast homogeneous diffusion of hydrogel under different stimuli, International Journal of Mechanical Sciences, Vol.137, 263–270.[PDF]
Lei J.C. and Liu Z.S., (2018), The structural and mechanical properties of graphene aerogels based on Schwarz-surface-like graphene models, Carbon, Vol. 130, 741-748.[PDF]
Zheng S.J. and Liu Z.S., (2018), Phase transition of temperature sensitive hydrogel under mechanical constraint, Journal of Applied Mechanics, Vol. 85(2), 021002. [PDF]
沙振东; 滕云; 刘子顺; 王铁军, (2018), 金属玻璃的微结构、增韧与疲劳问题研究进展, 固体力学学报, Chinese Journal of Solid Mechanics Vol.39 (4), 333-374.


2017:
Zhang N., Zheng S.J. and Liu Z.S., (2017), Numerical Simulation and Experimental Study of Crack Propagation of Polydimethylsiloxane. Procedia Engineering. DOI:10.1016/j.proeng.2017.08.191.
Wang Y.R., Huang R. and Liu Z.S., (2017), The Relationship between Structural Intensity and Sound Field Characteristics of Cylindrical Shells. Procedia Engineering. DOI:10.1016/j.proeng.2017.08.192.
Li Z.Q., and Liu Z.S. (2017), An algorithm for obtaining real stress field of hyperelastic materials based on digital image correlation system. Int. J. Computational Materials Science and Engineering, 6(4), **, DOI: 10.1142/S00033.
Sha Z.D., She C.M., Pei Q.X., Liu Z.S., Wang T.J., Gao H.J. (2107), Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical propertie. Materials Today, 20(10). 569-576. DOI:10.1016/j.mattod.2017.10.001.
He Y.H., Li Y.X., Liu Z.S. and Liew K.M., (2017), Buckling analysis and buckling control of thin films on shape memory polymer substrate. European Journal of Mechanics - A/Solids, 66, 356-369. DOI: 10.1016/j.euromechsol.2017.08.006. [pdf]
Hu J.Y., Zhou Y., Liu Z.S. and Ng T.Y., (2017), Pattern Switching in Soft Cellular Structures and Hydrogel-Elastomer Composite Materials under Compression. Polymers, 9(6), 229. DOI: 10.3390/polym**. [pdf]
He Y.H., Zhou Y., Liu Z.S. and Liew K.M., (2017), Pattern transformation of single-material and composite periodic cellular structures. Materials & Design, 132, 375-384. DOI: 10.1016/j.matdes.2017.07.022. [pdf]
Li, Y.X., Hu J.Y. and Liu Z.S., (2017), A constitutive model of shape memory polymers based on glass transition and the concept of frozen strain release rate. International Journal of Solids and Structures, 124 (1), 252-263. DOI: 10.1016/j.ijsolstr.2017.06.039. [pdf]
Sha Z.D., Wong W.H., Pei Q.X., Branicioc P.S., Liu Z.S., Wang T.J. and Gao H.J., (2017), Atomistic origin of size effects in fatigue behavior of metallic glasses. Journal of the Mechanics and Physics of Solids, 104, 84-95. DOI: 10.1016/j.jmps.2017.04.005.
Li, Y.X., He Y.H. and Liu Z.S. (2017), A Viscoelastic Constitutive Model for Shape Memory Polymers Based on multiplicative decompositions of the deformation gradient. International Journal of Plasticity, 91, 300-317. DOI: 10.1016/j.ijplas.2017.04.004. [pdf]
Lei J.C., Hu Y.W., Liu Z.S., Cheng Gary J. and Zhao K.J. (2017). Defects Mediated Corrosion in Graphene Coating Layer. ACS Applied Materials & Interfaces, 9(13), 11902-11908. DOI: 10.1021/acsami.7b01539. [pdf]
Sha Z.D., Pei Q.X., Wan Q. and Liu, Z.S. (2017), Failure Mechanism of Phosphorene by Nanoindentation. J. Phys. Chem. C, 121, 4708-4713. DOI: 10.1021/acs.jpcc.6b13071.
2016:
Bai, L.C.; Srikanth, N.; Zhao, B.; Liu, B.; Liu, Z.S.; Zhou, K. (2016), Lubrication Mechanisms of Graphene for DLC Films Scratched by a Diamond Tip. J. Phys. D: Appl. Phys. 49(48), 485302. DOI: 10.1088/0022-3727/49/48/485302.
Liu Z.S. (2016), Foreword Special issue on Mechanics of Soft Materials and Machines, International Journal of Applied Mechanics, 8 (7), **. DOI: 10.1142/S**1002X.
Xu S., Wang Y., Hu J.Y. and Liu Z.S. (2016), Atomic Understanding of the Swelling and Phase Transition of Polyacrylamide Hydrogel, International Journal of Applied Mechanics, 8(7), **. DOI: 10.1142/S**00020. [pdf]
Ang Elisa Y.M., Ng T.Y., Yeo J.J., Liu Z.S., Geethalakshmi K.R. (2016), Free-standing graphene slit membrane for enhanced desalination, Carbon, 110, 350-355. DOI: 10.1016/j.carbon.2016.09.043.
Wang Y. and Liu Z.S. (2016), The Fracture Toughness Of Graphene During Tearing Process. Modelling Simul. Mater. Sci. Eng., 24(8), 085002 (14pp). [pdf]
Wang Y., Xu S. Liu Z.S. and Ng T.Y., (2016), Energy Wave Propogation In Pristine and Bi-Crystal Graphene. Int. J. Computational Materials Science and Engineering, 4(3), **; DOI: 10.1142/ S00214. [pdf]
Liu Z.S. (2016), Message from the Editor-in-Chief, International Journal of Applied Mechanics, 8(3), ** DOI: 10.1142/S**10018.
Xu G.K., Liu Z.S., Feng X.Q., and Gao H.J., (2016) Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands. Physical Review E, 93, 032411.
Toh, W.. Ding, Z.W., Ng, T.Y., Liu, Z.S., (2016) Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels. Coupled systems mechanics, 5(4), 315-327. DOI: 10.12989/csm.2016.5.4.315. [pdf]
Ding, Z.W., Toh, W., Hu, J.Y., Liu, Z.S., Ng, T.Y., (2016) A simplified coupled thermo-mechanical model for the transient analysis of temperature-sensitive hydrogels. Mechanics of Materials, 97, 212-227. DOI: 10.1016/j.mechmat.2016.02.018. [pdf]
2015:
Sha Z.D., Branicio P.S., Pei Q.X., Liu Z.S., Lee H.P., Tay T.E., and Wang T.J. (2015), Strong and superplastic nanoglass. Nanoscale, 7(41), 17404-17409. DOI: 10.1039/C5NR04740D.
Sha Z.D., Qu S.X., Liu Z.S., Wang T.J. Gao H.J., (2015) Cyclic deformation in metallic glasses. Nano Letters, 15(10), 7010-7015. DOI: 10.1021/acs.nanolett.5b03045.
Xu S., Wan Q., Sha Z.D. and Liu Z.S., (2015), Molecular dynamics simulations of nano-indentation and wear of the γTi-Al alloy, Computational Materials Science, 110, 247-253. DOI: 10.1016/j.commatsci.2015.08.045.
Liu Z.S., Toh W. and Ng T.Y. (2015), Advances In Mechanics Of Soft Materials - A Review of Large Deformation Behavior Of Hydrogel, International Journal of Applied Mechanics, 7(5), **. [pdf]
Zhou H.F., Li X.Y., Wang Y., Liu Z.S., Yang W. and Gao H.J. (2015), Torsional Detwinning Domino in Nanotwinned One-Dimensional Nanostructures, Nano Letters, 15(9), 6082-6087. DOI: 10.1021/acs.nanolett.5b02330.
He Y.H., Guo S.S., Liu Z.S., and Liew K.M. (2015), Pattern Transformation of Thermo-responsive Shape Memory Polymer Periodic Cellular Structures, International Journal of Solids and Structures, 71, 194-205. DOI: 10.1016/j.ijsolstr.2015.06.022. [pdf]
Toh W.. Ding Z.W., Ng T.Y. and Liu Z.S., (2015), Wrinkling of a Polymeric Gel during Transient Swelling, Journal of Applied Mechanics, 82(6), 061004 DOI: 10.1115/1.**.
Sha Z.D., Pei Q.X., Liu Z.S., Zhang Y.W. and Wang T.J., (2015), Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches, Scientific Reports, 5, 10797.
Guo S.S., Wang D.F. and Liu Z.S., (2015), Probabilistic Analysis of Random Structural Intensity for Structural Members under Stochastic Loadings, Int. J. Computational Methods, 12(3), **; DOI: 10.1142/S02**139.
Li Y.X., Guo S.S., He Y.H. and Liu Z.S., (2015), A simplified constitutive model for predicting shape memory polymers deformation behaviour, Int. J. Computational Materials Science and Engineering, 3(4), ** (16 pages); DOI: 10.1142/S**.
2014:
Sha Z.D., Wan Q., Pei Q.X. Quek S.S. Liu Z.S., Zhang Y.W. and Shenoy V., (2014), On the failure load and mechanism of polycrystalline graphene by nanoindentation, Scientific Reports, 4, 7437. DOI: 10.1038/srep07437.
Shakouri A., Yeo J.J., Ng T.Y., Liu Z.S. and Taylor H., (2014) Superlubricity-activated thinning of graphite flakes compressed by passivated crystalline silicon substrates for graphene exfoliation,Carbon, 80, 68-74. DOI: 10.1016/j.carbon.2014.08.026.
Sha Z.D., He L.C., Xu S., Pei Q.X., Liu Z.S., Zhang Y.W. and Wang T.J (2014) Effect of aspect ratio on the mechanical properties of metallic glasses, Scripta Materialia, 93, 36-39. DOI: 10.1016/j.scriptamat.2014.08.025.
Toh W. Ng T.Y., Hu J.Y. and Liu Z.S. (2014), Mechanics of Inhomogeneous Large Deformation of Photo-Thermal Sensitive Hydrogels,InternationalJournal of Solids and Structures, 51(25-26), 4440-4451. DOI: 10.1016/j.ijsolstr.2014.09.014.
Sha Z.D., Quek S.S., Pei Q.X., Liu Z.S., Wang T.J. Shenoy V.B. and Zhang Y.W., (2014) Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene, Scientific Reports, 4, 5991. DOI: 10.1038/srep05991, SREP-13-06507.3d.
Swaddiwudhipong S., Lam N. and Liu Z.S., (2014) Special Issue on Computing in Engineering Applications Preface, Structural Engineering and Mechanics, 50(5), I-II.
Sha Z. D., He L.C., Pei Q.X., Liu Z.S., Zhang Y.W. and Wang T.J., (2014) The mechanical properties of a nanoglass/metallic glass/nanoglass sandwich structure, Scripta Materialia, 83, 37-40.
Yang Z.Z., Liu Z.S.. Ding Z.W., Hu J.Y., Tan Y.M., Swaddiwudhipong S., Lee K. (2014) Strength Analyses of the menisci and the ligaments of the Knee Joint under Different Loading Cases, Journal of Life Medicine, 2(3), 85-94.
Sha Z.D., He L.C., Pei Q.X., Pan H., Liu Z.S., Zhang Y.W., Wang T.J. (2014) On the notch sensitivity of CuZr nanoglass,Journal of Applied Physics, 115(16), 163507.
Chen L., Zhang Y., Swaddiwudhipong S., Liu Z.S. (2014) Mimicking the pattern formation of fruits and leaves using gel materials, Structural Engineering and Mechanics, 50(5), 575-588.
Hu J.Y., He Y.H., Lei J.C., Liu Z.S., Swaddiwudhipong S., (2014) Mechanical behavior of composite gel periodic structures with the pattern transformation Structural Engineering and Mechanics, 50(5), 605-616.
He LC, Guo S.S., Lei J.C., Sha Z.D. and Liu Z.S. (2014) The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets- a molecular dynamics study,CARBON, 75, 124-132. DOI:10.1016/j.carbon.2014.03.044.
Sha Z.D., Pei Q.X., Liu Z.S., Shenoy V.B. and Zhang Y.W., (2014) Is the failure of large-area polycrystalline graphene notch sensitive or insensitive?, CARBON, 72, 200-206. DOI: 10.1016/j.carbon.2014.02.003.
Toh W, Ng T.Y, Liu Z.S., Hu, J.Y. (2014) The Deformation Kinetics of pH-Sensitive Hydrogels, Polymer International, 63(9), 1578-1583. DOI 10.1002/pi.4652.
Yeo J.J., Ng T.Y., and Liu Z.S., (2014), Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths, Journal of Computational and Theoretical Nanoscience 11(8), 1-7.
Zhang Y., Chen L., Swaddiwudhipong S., Liu Z.S., (2014), Buckling Deformation of Annular Plates Describing Natural Forms, International Journal of Structural Stability and Dynamics, 14 (1), **. DOI: 10.1142/S02**545.
2013:
Adibi S., Sha Z.D. Branicio P.S., Joshi S.P., Liu Z.S., Zhang Y.W. (2013) A transition from localized shear banding to homogeneous superplastic flow in nanoglass, Applied Physics Letters, Vol.103 (21), 211905. (DOI: 10.1063/1.**.
Hu J.Y., He Y.H., Lei J.C.,Liu Z.S.(2013), Novel mechanical behavior of periodic structure with the pattern transformation,Theoretical & Applied Mechanics Letters, Vol. 3, 054007.
Lei J.C.,Liu Z.S., Yeo J.J., Ng T.Y. (2013). Determination of the Young’s Modulus of Silica Aerogel-An Analytical-Numerical Approach,Soft Matter,Vol. 9 (47), 11367-11373. DOI:10.1039/C3SM51926K.
Yeo J.J., Liu Z.S. Ng T.Y., (2013), Enhanced thermal characterization of silica aerogels through molecular dynamics simulation,Modelling and Simulation in Materials Science and Engineering, Vol. 21(7), 075004.
Ding Z.W.,Liu Z.S., Hu J.Y., Swaddiwudhipong S., Yang Z.Z. (2013), Inhomogeneous large deformation study of temperature-sensitive hydrogel,InternationalJournal of Solids and Structures, Vol. 50(16-17), 2610-2619.
Ren M., Huang J.G., Cai H., Tsai J. M.L., Zhou J.X.,Liu Z.S., Suo Z.G., Liu A.Q. (2013) Nano-optomechanical Actuator and Pull-Back Instability,ACS NANO, 7(2), 1676-1681.
Ng T.Y., Yeo J.J., andLiu Z.S.(2013), Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene: a comparative study,Int. J. Mech Mater Des,Vol. 9(2), 105-114.DOI: 10.1007/s10999-013-9215-0.
Toh W,Liu Z.S.Ng T.Y, Hong W. (2013), Inhomogeneous Large Deformation Kinetics of Polymeric Gels,International Journal of Applied Mechanics, 5(1). **.
Toh W, Ng T.Y.,Liu Z.S.(2013), Non-Linear Large Deformation Kinetics of Polymeric Gel,Key Engineering Materials, Vols. 535-536 pp 338-341.
Liu Z.S., Swaddiwudhipong S., Hong W., (2013,) Pattern Formation in Plants via Instability Theory of Hydrogels,Soft Matter, Vol. 9 (2), 577 - 587. DOI:10.1039/c2sm26642c.
2012:
Huang W.X., Pei Q.X.,Liu Z.S., Zhang Y.W. (2012), Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study,Chemical Physics Letters, 552, 97-101.
Islam M.J., Swaddiwudhipong S.,Liu Z.S., (2012), Penetration of Concrete Targets Using a Modified Holmquist-Johnson-Cook Material Model,International Journal of Computational Methods, Vol. 9 (4), **.
Yeo J.J.,Liu Z.S.,Ng T.Y. (2012), Comparing the effects of dispersed stone-thrower-wales defects and double vacancies on the thermal conductivity of graphene nanoribbons,Nanotechnology,Vol. 23,385702.
Zhang Y.,Liu Z.S., Swaddiwudhipong S., Miao H.. Ding Z.W., Yang Z.Z., (2012),pH-Sensitive Hydrogel for Micro-Fluidic Valve,Journal of Functional Biomaterials, Vol. 3 (3), 464-479.
Yang Z.Z.. Ding Z.W.,Liu Z.S., Swaddiwudhipong S., Tan Y.M. and Lee K.,(2012), Comparative Study on Strength of Knee Joint Using Various Material Models,Int. J. Computational Materials Science and Engineering, Vol. 1(2),DOI: 10.1142/S00133 , No.**.
Ng T.Y., Yeo J.J.,Liu Z.S., (2012), A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone-Thrower-Wales defects,CARBON, Vol.50 (13),4887-4893.
Liu Z.S., Swaddiwudhipong S., Islam M.J., (2012), Perforation of Steel and Aluminum Targets Using a Modified Johnson-Cook Material Model,Nuclear Engineering and Design. Vol. 250, 108-115.
Ng T.Y., Yeo J.J.,Liu Z.S., (2012), A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing,Journal of Non-Crystalline Solids, 358(11), 1350-1355.
2011:
Swaddiwudhipong S., Islam M.J.,Liu Z.S., (2011), High Velocity Perforation Simulations of Lightweight Target Plates Using a Modified Johnson-Cook Model,International Journal of Aerospace and Lightweight Structures, Vol. 1 (1) 67-88.
Liu Z.S., SwaddiwudhipongS., Cui F.F., Hong W., Suo Z.G., Zhang Y.W., (2011), Analytical Solutions of Polymeric Gel Structures under Buckling and Wrinkle,International Journal of Applied Mechanics, Vol. 3 (2) 235-257.
Harsono E., Swaddiwudhipong S.,Liu Z.S.and Shen L., (2011), Numerical and experimental indentation tests considering size effects"InternationalJournal of Solids and Structures, Vol. 48 (6) 972-978.
Islam M.J.,Liu Z.S. and Swaddiwudhipong S., (2011), Numerical study on concrete penetration /perforation under high velocity impact by ogive-nose steel projectile,Computers and Concrete, Vol. 8 (1), 111-123.
2010:
Swaddiwudhipong S., Islam M.J. andLiu Z.S.,(2010), High Velocity Penetration/Perforation Using Coupled Smooth Particle Hydrodynamics-Finite Element Method",International Journal of Protective Structures, Vol. 1. No.4, 489-506.
Pei Q.X.,Liu Z.S., Zhang Y.W. and Dong Z.L., (2010), Study of Nanoimprinting Processes by Molecular Dynamics Simulations,Journal of Computational and Theoretical Nanoscience, Vol. 7.2144-2150.
Liu Z.S., Hong W., Suo Z.G.,Swaddiwudhipong S., and Zhang Y.W., (2010), Modeling and Simulation of Buckling of Polymeric Membrane Thin Film Gel,Computational Materials Science, Vol. 49 S60-64.
2009:
Hong W.,Liu Z.S., and Suo Z.G., (2009) Inhomogeneous Swelling of a Gel in Equilibrium with A Solvent and Mechanical Load,InternationalJournal of Solids and Structures, Vol. 46 No. 17, 3282-3289.
Liu Z.S., Harsono E.,SwaddiwudhipongS., (2009), Material Characterization Based on Instrumented and Simulated Indentation Tests,International Journal of Applied Mechanics, Vol. 1(1), 61-84.
Harsono E.,SwaddiwudhipongS.,Liu Z.S.,(2009), Material Characterization Based on Simulated Spherical-Berkovich Indentation Tests,Scripta Materialia, Vol. 60 (11), 972-975.
2008:
Wang D.F, He P.F.,Liu Z.S.,(2008), Structural Intensity Characterization of Composite Laminates Subjected To Impact Load,Journal of Shanghai Jiaotong University (Science), Vol. 13(3), 375-380.
王东方,贺鹏飞,朱晓玲,刘子顺(Liu Z.S.)(2008),箱形复合材料层板结构的内噪声优化控制,力学季刊,Chinese Quarterly of Mechanics,Vol. 29(2),210-217.
SwaddiwudhipongS., Harsono E.,and Liu Z.S., (2008), Comparative Study of Reverse Algorithms via Artificial Neural Networks Based on Simulated Indentation Tests,Tsinghua Science & Technology. Vol. 13 (S1) 393-399.
Harsono E.,SwaddiwudhipongS. andLiu Z.S., (2008), Effect Of Friction on Indentation Test Results,Modelling and Simulation in Materials Science and Engineering, 16 (6) 065001, 1-12.
Liu Z.S., Swaddiwudhipong S. and Pei, Q.X., (2008), Simulations of Micro and Nanoindentations,Journal of Mechanics of Materials and Structures, Vol. 3 (10) 1847-1856.6.
SwaddiwudhipongS., Harsono E., Hua J., andLiu Z.S., (2008), Reverse Analysis via Efficient Artificial Neural Networks Based on Simulated Berkovich Indentation Considering Effects of Friction,Engineering with Computers, Vol. 24, No. 2, 127-134.
2007:
Pei Q.X., Lu C.,Liu Z.S. and Lam KY (2007), Molecular Dynamics Study on the Nano-imprint of Copper,Journal of Physics D. Applied Physics.Vol. 40, 4928-4935.
顾易瓅,郑百林,贺鹏飞,刘子顺(Liu Z.S.)(2007),具有分形结构界面的固体膜/粘滞层/基底层状结构的变形,固体力学学报,ACTA Mechanica Solida Sinica, Vol.28 No.2, 183-188.
王东方,贺鹏飞,刘子顺(Liu Z.S.),李岩(2007),复合材料层合板在动集中力作用下的结构声强特性,力学季刊,Chinese Quarterly of Mechanics, Vol.28(2), 217-222.
Swaddiwudhipong S., Ton T.T.,Liu Z.S. and Hua J., (2007), Modelling of wind load on single and staggered dual buildings,Engineering with Computers, Vol. 23 No. 3, 215-227.
Liu Z.S., Luo X.Y., Lee H.P. and Lu C., (2007), Snoring source identification using structure intensity method,Journal of Biomechanics, Vol. 40(4), 861-870.
2006:
Liu A.Q., Li J.,Liu Z.S., Lu C., Zhang X.M. and Wang Y., (2006) Self-Latched Micromachined Mechanism with Large Displacement Ratio,Journalof Microelectromechanical Systems, Vol. 15 (6), 1576-1585.
Swaddiwudhipong S., Hua J., Harsono E.,Liu Z.S. and Ooi. Brandon, N.S (2006), Improved Algorithm for Material Characterization by Simulated Indentation Tests,Modelling and Simulation in Materials Science and Engineering, 14 (2006) 1347-1362.
SwaddiwudhipongS, Hua J., Tho K.K. andLiu Z.S.(2006), Finite Element Modeling For Materials With Size Effect,Modelling and Simulation in Materials Science and Engineering, Vol. 14 (7), 1127-1137.
Gu Y.L., He P.F., Zheng B.L. andLiu Z.S., (2006). Deformation Of Thin Solid Film/Liquid Layer/Substrate Structures With Rough Liquid Layer/Substrate Interface,Thin Solid Films, Vol. 513, No.1-2, 243-247.
Liu Z.S., Lee H.P. and Lu C. (2006), Reply To Comments On Passive And Active Interior Noise Control Of Box Structures Using The Structural Intensity Method,Applied Acoustics, Vol. 67 (10), 1046-1047.
Tho K.K., Swaddiwudhipong S., Hua J. andLiu Z.S. (2006), Numerical Simulation of Indentation with Size Effect,Material Science and Engineering A., Vol. 421 (1-2): 268-275.
SwaddiwudhipongS., Hua J., Tho K.K. andLiu Z.S. (2006), Equivalency Of Berkovich And Conical Load-Indentation Curves,Modelling and Simulation in Materials Science and Engineering,. Vol. 14 (1), 71-82.
Swaddiwudhipong, S, Tho K.K, Hua J andLiu Z.S., (2006), Mechanism-Based Strain Gradient Plasticity in C0 Axisymmetric Element,International Journal of Solids and Structures, Vol. 43(5), 1117-1130.
Liu Z.S., Lee H.P. and Lu C. (2006), Passive and Active Interior Noise Control of Box Structure Using Structural Intensity Method,Applied Acoustics, Vol. 67(2), 112-134.
Liu Z.S., Lu C., Wang Y.Y., Lee H.P., Koh Y.K. and Lee K.S. (2006), Interior Noise Prediction of Tracked vehicles,Applied Acoustics, Vol. 67(1), 74-91.
2005:
Swaddiwudhipong S, Hua J, Tho K.K andLiu Z.S., (2005), C0 solid elements for materials with strain gradient effects,International Journal for Numerical Methods in Engineering, Vol. 64(10), 1400-1414.
Swaddiwudhipong S., Poh L.H., Hua J.,Liu Z.S. And Tho K.K., (2005), Modeling Nano-Indentation Tests Of Glassy Polymers Using Finite Elements With Strain Gradient Plasticity,Material Science and Engineering A, Vol. 404(1-2) 179-187.
SwaddiwudhipongS., Tho K.K.,Liu Z.S., Hua J. and Ooi Brandon N.S., (2005), Material Characterization via Least Squares Support Vector Machines,Modelling and Simulation in Materials Science and Engineering,13 (6), 993-1004.
Liu Z.S., SwaddiwudhipongS., Lu C. and Hua J., (2005), Transient Energy Flow of Vessel Plate/Shell Structures under Low Velocity Impact,Structural Engineering and Mechanics, Vol. 20 (4), 451-463.
Liu Z.S., Lee H.P. and Lu C., (2005), Numerical Study of Dynamic Buckling for Plate and Shell Structures,Structural Engineering and Mechanics, Vol. 20 (2), 241-257.
Tang M., Liu A.Q., Agarwal A.,Liu Z.S. and Lu C. (2005), A Single-Pole Double-Throw (SPDT) Circuit Using Lateral Metal-Contact Micromachined Switches,Sensors & Actuators: A. Physical, 121 (1), 187-196.
Liu Z.S., Cheng Q.H., He P.F., Lee H.P. and Lu C. (2005), Active Interior Noise Control of Box Structure,GESTSInternational Transaction on Acoustic Science and Engineering, Vol. 3(1), 155-163.
Tang M., Yu, A.B., Liu A.Q., Agarwal A., Aditya S. andLiu Z.S., (2005), High Isolation X-Band MEMS Capacitive Switches,Sensors & Actuators: A. Physical,Vol. 120 (1), 241-248.
Hua J.,SwaddiwudhipongS.,Liu Z.S. and XuQ.Y. (2005), Numerical Analysis of Nonlinear Rotor-Seal System,Journal of Sound and Vibration, Vol. 283(3-5), 525-542.
Liu Z.S., Lee H.P., and Lu C. (2005) Structural Intensity Study of Plates under Low Velocity Impact,International Journal of Impact Engineering, Vol. 31(8), 957-975.
Tho K.K., Swaddiwudhipong S.,Liu Z.S. and Zeng K. (2005), Simulation of Instrumented Indentation and Material Characterization,Material Science and Engineering A, Vol. 390(1-2), 202-209.
Swaddiwudhipong S., Tho K.K.,Liu Z.S., and Zeng K. (2005), Material Characterization Based on Dual Indenters,InternationalJournal of Solids and Structures, Vol. 42 (1), 69-83.
Swaddiwudhipong S., Tho, K. K.,Liu Z.S. and Zeng K. (2005), Material Characterization Based on Nano-Indentation,Journal of Metastable & Nanocrystalline Materials, Vol. 23, 359-362.
2004:
Liu Z.S., Swaddiwudhipong S. and Koh C.G., (2004), High Velocity Impact Dynamic Response of Structures Using SPH Method,International Journal of Computational Engineering and Science, Vol. 5(2), 315-326.
Tho K.K.,SwaddiwudhipongS.,Liu Z.S., and Hua J. (2004), Artificial Neural Network Model For Material Characterization By Instrumented Indentation,Modelling and Simulation in Materials Science and Engineering, Vol. 12(5), 1055-1062.
Tho K.K., Swaddiwudhipong S.,Liu Z.S., Zeng K. and Hua J. (2004), Uniqueness of Reverse Analysis from Conical Indentation Tests,Journal of Materials Research, Vol. 19(8), 2498-2502.
1987-2003:
Zhang X.M., Liu A.Q., Lu C., Wang F. andLiu Z.S., (2003), Polysilicon Micromachined Fiber-Optical Attenuator for DWDM Applications,Sensors& Actuators: A. Physical, Vol. 108 (1-3): 28-35.
Liu A.Q., Zhang X.M., Lu C., Wang F., Lu C. andLiu Z.S., (2003), Optical and Mechanical Models For A Variable Optical Attenuator Using A Micromirror Drawbridge,Journal of Micromechanical and Microengineering, Vol. 13(3), 400-411.
Wang F., Lu C.,Liu Z.S., Li J., Liu A.Q. and Zhang X.M. (2002), Finite Element Simulation and theoretical Analysis of Fiber-optical Switch,Sensors& Actuators: A. Physical, Vol. 96(2-3), 167-178.
Liu Z.S., Swaddiwudhipong S. and Koh C.G. (2002), Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method,Structural Engineering and Mechanics, Vol. 14(4), 455-472.
SwaddiwudhipongS., Koh C.G. andLiu Z.S. (2002) Numerical Study Of Shell Structures Under Low Velocity Impact,Journal of the International Association for Shell and Spatial Structures, Vol. 43(3), 159-170.
Liu Z.S. and SwaddiwudhipongS., (1997). Dynamic Response of Plate and Shell Structures under Low Velocity Impact,Journal of Engineering Mechanics ASCE, Vol. 123(12), 1230-1237.
SwaddiwudhipongS., andLiu Z.S. (1997), Response of Laminated Composite Plate and Shell,Composite Structures, Vol. 37(1), 21-32.
SwaddiwudhipongS. andLiu Z.S. (1996). Dynamic Response of Large Strain Elasto-Plastic Plate and Shell Structures,Thin-Walled Structures, Vol. 26(4), 223-239.
刘子顺(Liu Z.S.),乐美峰(1995),利用边界积分法计算截面图形的几何性质力学与实践(Mechanics In Engineering), Vol. 17(4), 68-70.
刘子顺(Liu Z.S.),殷家驹,赵挺 (1994),壳体结构弹塑性大应变动态响应分析,应用力学学报(Chinese Journal of Applied Mechanics), Vol. 11(1), 102-122.
毛祖德,马贵发,刘子顺(Liu Z.S.) (1993),110KV等级电力变压器油箱结构形式的探讨,变压器(Transformer), Vol. 30(1), 15-18.
刘子顺(Liu Z.S.),殷家驹,赵挺(1993), 计算板壳结构大应变动态问题的新型有限元法,南洋理工学院学报(Journal of Nanyang Institute of Science and Technology), Vol. 1(1), 66-72. (创刊号).
刘子顺(Liu Z.S.),闵行,楼志文 (1990),利用固有应变理论计测对节焊钢管残余应力场的实验研究,应用力学学报(Chinese Journal of Applied Mechanics), Vol. 7(2), 48-55.
刘子顺(Liu Z.S.),闵行,楼志文,(1987),计测残余应力场的固有应变法研究,西安交通大学学报(Journal of Xi’an Jiaotong University), Vol. 21(4), 47-54.











学术交流 - 刘 Liu Zishun 子顺主办主持国际会议
2020年9月,5th International Conference on Frontiers in Applied Mechanics-ICFAM 2020, Xi'an. Chaiman.
2019年7月, Int. Co-Chair of The 10th International Conference on Computational Methods, (ICCM2019) July 9-13, 2019, Singapore. Co-Chair
2019年6月, Co-Chair of Symposium FF Computational Advanced Material Science and Application, 10th ICMAT2019, June 23-28, 2019, Singapore. Co-Chair
2019年3月, 2nd International Conference on Modeling in Mechanics and Materials(CMMM2109). 29-31, March 2019. Suzhou, China. Co-Chair
2018年8月, 4th International Symposium on Frontiers in Applied Mechanics (ISFAM2018). 8-11 Aug. 2018. Trondheim, Norway. 会议主席
2018年7月, Mini-symposium for Computational Mechanics of Soft Matter and Machines, WCCM XIII and PANACM II, 22-27 July, New York, 会议主席
2018年6月, Symposium of Multiscale and multiophysics modeling and simulation methods 18th U.S. National Congress for Theoretical and Applied Mechanics (USNC/TAM18), 4-9 June. 2018 Chicago, USA. 联合主席
2017年9月, International Symposium on Safety and Mechanics of Nuclear Structures (ISSMNS2017), 21-24 Sep. 2017, Xi’an, China. 会议主席
2016年12月, 3rd International Symposium on Frontiers in Applied Mechanics (ISFAM2016). 1-4 Dec. 2016 Melbourne, Australia. 会议主席
2016年7月, Mini-symposium for Computational Mechanics of Soft Matter and Machines, WCCM XII and APCOM VI, July 24-29, 2016, Seoul Korea, 会议主席
2016年7月,12th World Congress on Computational Mechanics (WCCM XII) and 6th Asia-Pacific Congress on Computational Mechanics (APCOM VI), July 24-29, 2016, Seoul Korea, 组委会委员
2015年11月, 2nd International Symposium on Frontiers in Applied Mechanics (ISFAM2015). 8-10 Nov. 2015 Xi’an China. 组委会主席
2015年6-7月, Symposium S, Computational Materials Science and Engineering, ICMAT2015& IUMRS-ICA2015, 28 June-3 July 2015 Singapore. 组委会联合主席;
2014年12月, International Symposium on Frontiers in Applied Mechanics (ISFAM2014). 4-7 Dec. 2014 Singapore. 组委会主席;
2014年4月,APACM Thematic Conference & IACM Special Interest Conference COMPSAFE 2014 Computational Engineering and Science for Safety and Environmental Problems,Sendai International Center, Sendai, Japan, 组委会委员;
2013年12月,5th Asian Pacific Congress on Computational Mechanics 2013 (APCOM2013),SINGAPORE,组委会主席;
2013年10月,The 23rd International Workshop on Computational Mechanics of Materials (IWCMM23),SINGAPORE,组委会委员;
2012年11月,The 4th International Conference on Computational Methods (ICCM2012), Gold Coast, Australia,组委会委员;
2009年,9th International Conference on Analysis of Discontinuous Deformation (ICADD-9),SINGAPORE,组委会委员;
2009年,2009 Fall Workshop & Conference: Advanced Image-Based Measurement Methods: Recent Developments and Applications in Engineering and Medicine, SC USA,组委会委员;
2011年 7月:International Conference on Materials for Advanced Technologies (ICMAT 2011) , Singapore,大会委员
2009年 7月:International Conference on Materials for Advanced Technologies 2009 (ICMAT 2009), Singapore,大会委员
2007年 7月:International Conference on Materials for Advanced Technologies (ICMAT 2007), Singapore,大会委员




邀请报告
• 2019年1月, International Conference on Plasticity, Damage & Fracture 2019: Jan. 3-9, 2019, Panama City, Panama. (Keynote Lecture)
• 2018年8月, 4th International Symposium on Frontiers in Applied Mechanics (ISFAM2018). 8-11 August 2018. Trondheim, Norway. (Keynote Talk)
• 2018年7月, WCCM XIII and PANACM II, New York, USA, July 22-27, 2018.(Keynote Talk)
• 2018年6月,The 3rd International Symposium on Computing in Cardiology (ISCC III), Xi’an China, June 1-2, 2018.(Plenary Talk)
• 2017年8月, International Conference on Structural Engineering and Computational Mechanics (SE&CM2017), August 25-27, 2017, Guangzhou, China.(Plenary Talk)
• 2017年7月, The 8th International Conference on Computational Methods (ICCM2017), July 25-29, 2017, Guilin, China.(Keynote Talk)
• 2016年12月, Proceedings of 3rd Int. Symposium on Frontiers in Applied Mechanics, Dec. 1-4 2016, Melbourne Australia.(Invited Talk)
• 2016年7月,12thWorldCongressonComputationalMechanics(WCCMXII)and6thAsia-PacificCongressonComputationalMechanics(APCOMVI)
(Semi-Plenary Lecture)
• 2015年8月,The Chinese Congress of Theoretical and Applied Mechanics 2015, MS26 复杂条件下力学-化学耦合与交互 (Invited Lecture)
• 2015年5月,Hunan University, China (湖南大学机械与运载工程学院)
• 2015年5月,Xiangtan University, China (湘潭大学土木工程与力学学院)
• 2014年12月,The Center for Soft Materials, Zhejiang University, China.
• 2014年9月,Shanghai Institute of Applied Mathematics and Mechanics, China.
• 2014年8月,2014 Conference of China Computational Mechanics, August 10-13, 2014, Guiyang, China. (Semi-Plenary Lecture).
•2014年7月,11th World Congress on Computational Mechanics (WCCM XI), July 20 - 25, 2014, Barcelona, Spain. (Keynote Lecture).
• 2014年6月,School of Aerospace, Harbin Institute of Technology, Harbin, China.
• 2014年6月,School of Mechanical engineering, Tianjin University, China.
• 2014年4月, Laboratory of Soft & Wet Matter, Hokkaido University, Faculty of Advanced Life Science, Japan.
• 2014年1月, Department of Mechanical and Aerospace Engineering, Seoul National University, Korea.
• 2013年11月,Department of Earth and Space Science and Engineering, York University, Canada.
• 2013年9月, Institute of Solid Mechanics, Tsinghua University, China.
• 2013年5月, State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, China.
• 2013年5月,Department of Engineering Mechanics, Hohai University, China.
• 2013年3月, School of Civil Engineering and Transportation South China University of Technology, China.
• 2013年3月,Department of Engineering Mechanics, Chongqing University, China.
• 2012年12月,College of Science, Xi’an University of Architecture and Technology, China.
• 2011年3月,Dept. of Aerospace Engineering, Iowa State University, USA.
• 2011年3月,Dept. of Civil Engineering, MIT, USA.
• 2010年9月,Dept. of Mechanics, Lanzhou University, China.
• 2010年3月,Dept. of Mechanical Engineering, University of Glasgow, UK.
• 2009年10月,School of Civil Engineering, Beijing Jiaotong University, China.
• 2009年6月, School of Aeronautics and Aerospace, Zhejiang University, China.
• 2008年12月,Department of Mechanical and Materials Engineering,Queen's University,Kingston, Canada
• 2008年11月,Dept. of Maths, University of Glasgow, UK.
• 2007年10月, School of Computer Engineering and Science, Shanghai University, China.
• 2006年6月, School of Aerospace, Xi'an Jiaotong University, China.
• 2006年3月,School of Engineering, Computer Science & Mathematics, University of Exeter, UK.
• 2006年3月,School of Aeronautical Engineering, Queen's University Belfast, UK.
• 2006年2月, Dept. of Maths, University of Glasgow, UK.
• 2006年1月, Centre for Advanced Computations in Engineering Science, National University of Singapore.
• 2005年3月, Institute for Computational Sciences (RICS), Tsukuba, Japan.
• 2004年10月,Dept. of Mechanics, VSB - Technical University of Ostrava, Czech Republic.







出版图书 - 刘 Liu Zishun 子顺出版图书(章节)
Liu Z.S. and Fang D.N. Frontiers in Applied Mechanics, Research Publishing, Singapors. (2020) ISBN: 978-981-14-7514-6
Liu Z.S. and He J.Y.Frontiers in Applied Mechanics, Research Publishing, Singapore, (2018) ISBN 978-981-11-2729-8.
Ng T.Y., Joshi S.C., Yeo J.J. and Liu Z.S.Effects of Nano Porosity on the Mechanical Properties and Applications of Aerogels in Composite Structures, Advances in Nanocomposites, Springer. (2016) ISBN: 978-3-319-31660-4
Zishun Liu, Teng Yong Ng and Xiqiao Feng, Proceedings of Frontiers in Applied Mechanics, Research Publishing, Singapore. (2015) ISBN 9-789810-962784.
Zishun Liu, Frontiers in Applied Mechanics, Imperial College Press, UK, Singapore. (2014) ISBN 978-1-78326-683-8.







科普介绍 - 刘 Liu Zishun 子顺科普介绍
水凝胶-软基质体系的相互作用机理研究
自从人类开始从信息时代迈入智能时代,人工智能和生物医学等技术正在成为本世纪科学研究的主旋律。在此基础上,智能机器人技术在未来将会渗透进人类生活的方方面面,并且使人类与机器的界限越来越模糊,机器与人体的结合在可预见的未来是一个必然的趋势。这种趋势会促进医疗领域的个性化,柔性器件的普及化,可穿戴设备的商用化等。因此,在未来机器不再是冰冷的金属机械结构,它可能会成为粘附在我们身体上,甚至是长在我们器官上的软机器。人体器官(例如大脑,脊髓,心脏,肌肉和皮肤等)大多与水凝胶有相似的力学和化学特性,它们柔软且富含水分。而目前常见的电子器件和产品大多有金属、硅、陶瓷、玻璃和工程塑料组成,它们坚硬易碎且无法与生物体直接相容。因此,寻找且优化一种可以胜任人体与各种电子器件交互的材料成为最前沿的课题之一。长期,稳定和高效的人机界面有可能带来前所未有的颠覆性革命。
麻省理工学院的赵选贺课题组在2019年发表的综述(Yuk et al,.2019)中阐明,水凝胶是唯一一种可能成为人机交互作用界面的材料的,并提出水凝胶生物电子学的概念。目前,该方向的应用主要分为4个子方面:1)水凝胶封装技术,包括涂层与胶囊化;2)离子导电水凝胶的力学和电学特性;3)导电纳米复合水凝胶;4)导电聚合物水凝胶。以上研究都包含水凝胶表面与另外一种基质的相互作用,涉及断裂韧性,界面强度,导电特性和生物相容性等诸多问题。本课题组主要专注于基于以上现实应用的底层机理,发展更新更实用的水凝胶本构理论,水凝胶-软基质界面和断裂理论,为实际的工程应用提供理论支持。

水凝胶在实际应用过程中会经常伴随着吸水和失水的过程,我们对这一动态过程进行了理论研究,推导出了均质水凝胶随时间响应理论解。该理论可以适用于不同响应下的情况。响应可包括化学势,温度,静水压等等。

水凝胶可能要应用于各种变化多端的环境,因此含水量一定会随着环境的变化而变化。我们发现水凝胶的模量和硬度会随着含水量的改变而发生剧烈变化。我们惊奇的发现,水凝胶的杨氏模量与其含水量满足幂率关系。并且在失水和吸水两种过程中满足不同的标度率。并且不同类型的水凝胶,标度率是不同的,但是依然有普适性。



利用水凝胶大变形理论解释一些奇妙的自然现象
自然界充满了神奇,我们生长在这个奇妙的世界中。自然界动植物的生长充满了迷人的复杂模式和形状。人们观察到植物的生长过程可产生各种有趣而复杂的三维形状:如正螺旋形和反螺旋形的仙人掌,园型仙人掌上的肋骨可呈现出平行四边形图形,南瓜表面会出现复杂的脊谷图貌。而松树锥和向日葵头的图案又显示出交叉的螺旋形状。达尔文曾经说过, “迷人的植物图案可以驱使人具有疯狂想象”。人们可能会问自然界生物为何长得如此奇妙?自然植物为何生长的千奇百怪?为什么圆形南瓜有十个等距纵脊,而另一种长南瓜约有二十个纵脊?为什么一个哈密瓜表面呈现出网状混合山脊和明显的纬度形态模式?人们虽然早就认识到植物叶子和花瓣是由不同模式的图形组成,或呈现出对称或反对称螺旋图型,这些自然结构形成的物理机制和变形机制是什么?如何解释形态的发生与这些植物的自然生长?我们如何理解这些表面形貌与基因的关系?这些问题一直困扰着许许多多的研究者。近一个世纪来,科学家都试图用各种各样的理论、方法来解释这些现象。一个最简单而普遍答案可能是,力产生的变形及屈曲是造成这些模式形成的主要原因,在动植物生长过程中动植物的总势能总是趋于最小化,它可能是动植物进化时表面出现褶皱变形的成因。另外一些研究人员认为化学和生物物理学是某些植物和动物的形态形成的主因,例如,生长激素作为化学信号及成长的动力作为物理信号可影响植物顶端材料使其产生不同的植物形态。虽然答案尚不完全清楚,但是人们试图利用力学原理解释这些奇妙现象的努力从未停止。
例如早在上个世纪90年代,著名力学家斯坦福大学Charles R. Steele教授和他的研究组就通过实验研究、理论分析和仿真模拟来证明机械应力和变形在植物模式变形中起着关键的作用。他们尝试用弹性梁、板、壳结构来解释某些自然现象。但是,他们所用的材料主要是工程材料,其材料的弹性本构关系是线弹性。实际上植物及生物界的材料特性不同于一般工程材料。虽然他们对某些动植物的形态做出来某些解释,但这种解释并不是非常合适的。由于凝胶材料同动植物材料相似,都含有大量的液体,并且凝胶的溶胀与动植物早期生长的过程类似。所以利用凝胶材料来代替工程材料可能是一种更好的选择。近年来,随着软物质力学的快速发展,水凝胶变形的本构理论和模拟水凝胶变形的数值方法取得了巨大的突破。我们(西安交通大学刘子顺研究组)借助于水凝胶非均质大变形的理论,发现自然界中许多有趣现象可以用水凝胶大变形理论及扩散理论得到很好的解释和模拟。例如我们利用凝胶状溶胀变形研究了树叶的生长和枯萎过程(Liu et al., 2010),模拟结果同实际生长变形过程吻合较好。我们还利用结构的稳定屈曲理论揭示了水果生长时由于屈曲变形产生的奇妙形状( Liu et al., 2012; Chen et al., 2014;),此研究中我们利用化学势的变化来模拟水果生长的生长过程。利用凝胶圆环结构的溶胀过程中产生的屈曲现象来解释一些花环的产生(Zhang et al., 2014),揭示了甘蓝花形成的奇妙现象等等(如图1所示)。比如,南瓜在生长的过程中会在头部产生屈曲,形成瓣状,我们利用水凝胶在受约束的条件下进行吸水的过程同这一现象进行比拟,结果发现,在水凝胶吸水溶胀过程中也会产生相同的屈曲的现象,此模拟过程可以解释一些瓜果的形态(如图2所示)。通过生涩期到成熟期的化学势变化改变以及边界条件的施加,我们进一步模拟了苹果和辣椒的生长过程。三种不同脉络结构的叶子的干燥过程以及圆环板形状的卷心菜屈曲都进行了研究(如图3所示)。即在凝胶非均匀场理论基础上从力学角度说明水果和植物的纹路生长形态。不仅如此,我们也希望利用水凝胶的大变形理论来解释一些动物体的生长现象,为生命科学提供力学理论支持,例如利用水凝胶代替人工关节等。
因此力学应用无处不在,水凝胶非均匀场理论可用来更加合理解释一些动植物的生长过程及一些自然现象。无论从工程应用和科学研究方面看,软物质力学的研究将具有极大的应用前景。
图1 自然界中奇妙的生长现象。(a) 树叶的生长;(b)树叶的枯萎;(c)南瓜的瓣状;(d)花环的产生
图2 水凝胶大变形理论对于自然现象的模拟。(a)树叶的吸水;(b)树叶的失水;(b)南瓜的生长;(d)花环的产生。
图3 通过凝胶材料模拟蔬果植物的生长形态
新型形状记忆聚合物支架的评估及其力学行为的研究
当前,心血管疾病已成为世界范围内第一位死亡原因。将血管支架引入狭窄的血管腔使其血液重新恢复正常流动,是目前治疗心血管疾病的一个重要手段。在临床中,医学应用支架的材料多为不锈钢、镍钛合金或钴铬合金。金属支架与血管壁的接触会引起内膜增生使血管发生再狭窄。形状记忆聚合物作为一种新型智能材料,其可以在受到合适的刺激后由一种暂时形态恢复到初始形态,具有优越的大变形特性、良好的生物相容性、生物可降解性等。此优异的特性为形状记忆聚合物材料替代传统金属材料进入人体进行工作,例如形状记忆聚合物支架,提供了良好的发展前景。
西安交通大学刘子顺研究组同英国格拉斯哥大学研究组合作,建立了形状记忆聚合物大变形本构方程,并设计出大径向支撑强度支架结构,从计算和模拟角度证明了形状记忆聚合物支架的可行性。
该成果发表在《Engineering Computations》上。第一作者是西安交通大学航天航空学院博士研究生刘若璇,通讯作者是刘子顺教授,合作者有格拉斯哥大学Sean Mcginty博士, Xiaoyu Luo教授及新加坡高性能计算研究所Fangsen Cui博士。


Chen, L., Zhang, Y., Swaddiwudhipong, S., Liu, Z., 2014. Mimicking The Pattern Formation Of Fruits And Leaves Using Gel Materials. Structural Engineering & Mechanics 50, 575-588.
Liu, Z., Hong, W., Suo, Z., Swaddiwudhipong, S., Zhang, Y., 2010. Modeling And Simulation Of Buckling Of Polymeric Membrane Thin Film Gel. Computational Materials Science 49, S60-S64.
Liu, Z., Swaddiwudhipong, S., Hong, W., 2012. Pattern Formation In Plants Via Instability Theory Of Hydrogels. Soft Matter 9, 577-587.
Zhang, Y., Chen, L., Swaddiwudhipong, S., Liu, Z., 2014. Buckling Deformation Of Annular Plates Describing Natural Forms. International Journal of Structural Stability & Dynamics 14, **-.







研究团队 - 刘 Liu Zishun 子顺团队成员





助理教授

雷金成
Email:leijc825@qq.com
Belal A. M. M. Selim
Email:belalphd@mail.xjtu.edu.cn
徐帅
Email:xushuai9776@stu.xjtu.edu.cn?

研究助理

黄蓉
Email:ronghuang_xjtu@sina.com


博士生

刘若璇
Email:liuruoxuan@stu.xjtu.edu.cn
李子谦
Email:liziqianss@vip.qq.com
郑守靖
Email:zsjaa123@stu.xjtu.edu.cn



林睿捷
Email:lrj**@stu.xjtu.edu.cn
Sundari Pruthvi Raj
Email:pruthvirazz.s@gmail.com

薛毅恒
Email:@qq.com?


??
周梓棣
Email:zhouzidi@stu.xjtu.edu.cn




硕士生

韩灵芝
Email:hanlingzhi2345@stu.xjtu.edu.cn
陈琛
Email: @qq.com
朱景昂
Email:stephenzhu@stu.xjtu.edu.cn



贾烨彤
Email:@qq.com
曾梁松
Email: **@qq.com
王一瑞
Email:wangyr@stu.xjtu.edu.cn



Mahmoud Hussien Ahmed Sebaq
Email: Mahmoud.hussien@bhit.bu.edu.eg
@stu.xjtu.edu.cn



本科生





前成员

丁志伟
Email:dingzhiwei007@gmail.con
杜翔宇
Email:@qq.com
Xiuxiu Guo
Email:xiuxiu28156@163.com



Linchun He
Email:helch008@163.com
胡建英
Email:yinger08@stu.xjtu.edu.cn
潘周周
Email:@qq.com



William Toh
Email:wtoh1@e.ntu.edu.sg
王预然
Email:black_gundam@163.com
Zhengzhi Yang
Email:yang77113@gmail.com



Jing Jie Yeo
Email:jyeo1@e.ntu.edu.sg
Yang Zhang
Email:g**@nus.edu.sg
周宇
Email:@qq.com



张妮
Email:nizhang961228@xjtu.edu.cn
Giftson Sudhaker
Email:giftson4u@gmail.com
Kirk Ming Yeoh
Email:KYEOH003@e.ntu.edu.sg



何雨壕
Email:horse.**@stu.xjtu.edu.cn
李云欣
Email:liyunxinrrr@sina.com
王莹
Email:ying.wang.1@qq.com



马谦谦
Email:qianqian@stu.xjtu.edu.cn
严寒雪玉
Email:a@stu.xjtu.edu.cn 贾贻然Email:@qq.com


李征杰
Email:lzj@stu.xjtu.edu.cn














学术任职 - 刘 Liu Zishun 子顺学术任职
主要任职

多个国际杂志的主编及编委
Int. Journal of Applied Mechanics (IJAM), 2008年至今
主编
Int. Journal of Computational Materials Science and Engineering (IJCMSE), 2011年至今
Computational Materials Science(COMMAT), 2010 客座主编

Structural Engineering and Mechanics, 2014
Journal of Applied and Computational Mechanics, 2017年至今 副主编
Acta Mechanica Solida Sinica, 2015年-2020年 特邀副主编
Journal of Mechanics of Material and Structures (JoMMS), 2018年至今 Editor
International Journal of Structural Stability and Dynamics (IJSSD), 2017年至今
编委

Coupled System Mechanics, An International Journal (CSM), 2017年至今
Int. Journal of Computational Methods (IJCM), 2009年至今
应用力学学报Chinese Journal of Applied Mechanics (CJAM), 2007年至今
Acta Mechanica Solida Sinica (AMSS), 2020年-至今
Acta Mechanica Sinica (AMS), 2020年-至今

Multiscale Science and Engineering (MSE), 2019年-至今





专业会员资格
2016.12至今, 国际应用力学学会(IAAM)秘书长;
2016.10至今, 中国力学学会计算力学专业委员会特邀委员;
2014.06至今, 陕西省力学学会常务理事;
2012.07至今,亚洲太平洋区计算力学学会(APACM)常务理事;
2012.05至今,新加坡计算力学协会(SACM)会士;
2011.04至今,新加坡计算力学协会(SACM)主席;
2010.11至今,美国ASME软物质力学执行委员会会员;
2010.11至今,美国机械工程师协会(ASME)会员;
2010.08至今,国际材料学会(IUMR)会员;
2008.03至今,新加坡理论与应用力学学会执行常务理事;
2005.07至今,新加坡材料学会执行常务理事;
2003.06至今,国际计算力学学会(IACM)会员;
2003.06至今,新加坡计算力学协会会员;
2009.03~2011.04,新加坡计算力学协会(SACM)副主席;
2009.02~2012,麻省理工学院计算工程中心国际咨询委员会委员。











团队留影 - 刘 Liu Zishun 子顺团队风采
2019年




2016年11月










相关话题/西安交通大学 师资