删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西安交通大学电子与信息工程学院导师教师师资介绍简介-周 迪

本站小编 Free考研考试/2021-06-26

周迪(Homepage) - 周 迪Basic Information

周迪教授、博士生导师
《电子元件与材料》青年编委
中国电子学会元件分会第十一届委员会委员
电子元器件关键材料与技术专业委员会委员
电气与电子工程师协会高级会员(IEEE Senior Member)
中国电子学会高级会员
美陶副编(Associate Editor of the Journal of the American Ceramic Society)
材料研究通报编委(Editorial Board Member of Materials Research Bulletin)
国际应用陶瓷技术副编(Associate Editor ofInternational Journal of Applied Ceramic Technology)
先进电介质编委(Editorial Board Member ofJournal of Advanced Dielectrics)
ACS应用材料与界面杂志顾问委员会成员(Editorial Advisory Board Member of ACS Applied Materials & Interfaces)
研究方向:
1、微波介质材料(microwave dielectric materials)
2、低温共烧陶瓷技术(low temperature co-fired ceramics technology)
3、储能电容器材料(energy storage materials)
4、微波吸收材料(microwave absorption materials)
5、面向高频/储能/吸波功能复合介质材料(functional composite materials for high frequency/energy storage/microwave absorption)。
办公室:曲江校区西六楼309室
e-mail: zhoudi1220@gmail.com
zhoudi1220@mail.xjtu.edu.cn




站点计数器




我的新闻
周迪教授课题组最新研究成果:微波介质材料以及低温共烧陶瓷技术的研究 荐
2021-02-01

英国皇家化学会2019 Top 1% 高被引中国作者 | 材料类及综合化学类
2020-12-22

西安交大研究人员在聚合物基复合介电储能电容器领域取得重要进展
2020-08-20

关于推迟2019-2020学年春季学期开学时间的通知
2020-01-27

Thank you for helping with the ACerS journals
2019-12-05

Frontiers in Materials 特刊 “Advanced Electroceramics for Energy Conversion and Storage”
2019-08-28


更多新闻>>




荣誉
2021年 陕西省高等学校科学技术奖一等奖
2021年Editorial Advisory Board Member of ACS Applied Materials & Interfaces
2021年Associate Editor ofInternational Journal of Applied Ceramic Technology
2021年中国仪表功能材料学会电子元器件关键材料专委会青年才俊奖
2020年Outstanding Reviewer -The American Ceramic Society
2020年the top 1% of highly cited authors in Royal Society of Chemistry journals, 2019
2020年 陕西省电子学会科学技术奖自然科学一等奖
2020年 Editorial Board Member ofJournal of Advanced Dielectrics
2020年 Associate Editor of theJournal of the American Ceramic Society
2020年 Editorial Board Member ofMaterials Research Bulletin
2019年Outstanding Reviewer -Journal of The American Ceramic Society

2019年Top 1% of authors, highly cited in the Royal Society of Chemistry journals in 2019
2018年Outstanding Reviewer -Journal of The American Ceramic Society
2018年International Centre for Diffraction Data(ICDD) Certificate Award
----in recognition of the significant contribution of 6 patterns to the Powder Diffraction File-Release 2018.
2017年Outstanding Reviewer -Journal of The American Ceramic Society (top 2%)
2017年Outstanding Reviewer -Journal of The European Ceramic Society
Outstanding Reviewer -Ceramics International
Outstanding Reviewer -Materials Research Bulletin
Outstanding Reviewer -Materials Chemistry and Physics
Outstanding Reviewer -Materials Letters
Outstanding Reviewer -Journal of Materiomics
2016年International Centre for Diffraction Data(ICDD) Certificate Award
2016年Journal of The American Ceramic Society2016 Reviewer Reward
2015年Outstanding Reviewer -Ceramics International- Achieved: November 2015
2015年Outstanding Reviewer -Journal of Alloys and Compounds- Achieved: September 2015
2015年Outstanding Reviewer -Materials Research Bulletin- Achieved: January 2015
2015年陕西省创新人才推进计划(青年科技新星)
2013年西安交通大学第十三届教学成果奖(特等奖)
2013年陕西省自然科学优秀学术论文奖(一等奖)
2012年陕西省优秀博士论文、全国百篇优秀博士论文提名
2010年西安交通大学校级优秀博士论文
2009年唐文治特别优秀研究生奖学金、省级优秀毕业生(博士研究生)
2008年应用材料奖学金、优秀研究生标兵称号
2007年潘文渊奖学金




站点收藏
类别/站点
国际电介质研究中心/电子陶瓷与器件教育部重点实验室
西安交通大学
交大思源兵马俑BBS
电子与信息学部
电子科学与工程学院
国家留学基金委
美国陶瓷学会会刊
欧陶
材料研究快报Materials Research Bulletin
材料研究快报





周迪(Homepage) - 周 迪Basic Information

周迪教授、博士生导师
《电子元件与材料》青年编委
中国电子学会元件分会第十一届委员会委员
电子元器件关键材料与技术专业委员会委员
电气与电子工程师协会高级会员(IEEE Senior Member)
中国电子学会高级会员
美陶副编(Associate Editor of the Journal of the American Ceramic Society)
材料研究通报编委(Editorial Board Member of Materials Research Bulletin)
国际应用陶瓷技术副编(Associate Editor ofInternational Journal of Applied Ceramic Technology)
先进电介质编委(Editorial Board Member ofJournal of Advanced Dielectrics)
ACS应用材料与界面杂志顾问委员会成员(Editorial Advisory Board Member of ACS Applied Materials & Interfaces)
研究方向:
1、微波介质材料(microwave dielectric materials)
2、低温共烧陶瓷技术(low temperature co-fired ceramics technology)
3、储能电容器材料(energy storage materials)
4、微波吸收材料(microwave absorption materials)
5、面向高频/储能/吸波功能复合介质材料(functional composite materials for high frequency/energy storage/microwave absorption)。
办公室:曲江校区西六楼309室
e-mail: zhoudi1220@gmail.com
zhoudi1220@mail.xjtu.edu.cn




站点计数器




我的新闻
周迪教授课题组最新研究成果:微波介质材料以及低温共烧陶瓷技术的研究 荐
2021-02-01

英国皇家化学会2019 Top 1% 高被引中国作者 | 材料类及综合化学类
2020-12-22

西安交大研究人员在聚合物基复合介电储能电容器领域取得重要进展
2020-08-20

关于推迟2019-2020学年春季学期开学时间的通知
2020-01-27

Thank you for helping with the ACerS journals
2019-12-05

Frontiers in Materials 特刊 “Advanced Electroceramics for Energy Conversion and Storage”
2019-08-28


更多新闻>>




荣誉
2021年 陕西省高等学校科学技术奖一等奖
2021年Editorial Advisory Board Member of ACS Applied Materials & Interfaces
2021年Associate Editor ofInternational Journal of Applied Ceramic Technology
2021年中国仪表功能材料学会电子元器件关键材料专委会青年才俊奖
2020年Outstanding Reviewer -The American Ceramic Society
2020年the top 1% of highly cited authors in Royal Society of Chemistry journals, 2019
2020年 陕西省电子学会科学技术奖自然科学一等奖
2020年 Editorial Board Member ofJournal of Advanced Dielectrics
2020年 Associate Editor of theJournal of the American Ceramic Society
2020年 Editorial Board Member ofMaterials Research Bulletin
2019年Outstanding Reviewer -Journal of The American Ceramic Society

2019年Top 1% of authors, highly cited in the Royal Society of Chemistry journals in 2019
2018年Outstanding Reviewer -Journal of The American Ceramic Society
2018年International Centre for Diffraction Data(ICDD) Certificate Award
----in recognition of the significant contribution of 6 patterns to the Powder Diffraction File-Release 2018.
2017年Outstanding Reviewer -Journal of The American Ceramic Society (top 2%)
2017年Outstanding Reviewer -Journal of The European Ceramic Society
Outstanding Reviewer -Ceramics International
Outstanding Reviewer -Materials Research Bulletin
Outstanding Reviewer -Materials Chemistry and Physics
Outstanding Reviewer -Materials Letters
Outstanding Reviewer -Journal of Materiomics
2016年International Centre for Diffraction Data(ICDD) Certificate Award
2016年Journal of The American Ceramic Society2016 Reviewer Reward
2015年Outstanding Reviewer -Ceramics International- Achieved: November 2015
2015年Outstanding Reviewer -Journal of Alloys and Compounds- Achieved: September 2015
2015年Outstanding Reviewer -Materials Research Bulletin- Achieved: January 2015
2015年陕西省创新人才推进计划(青年科技新星)
2013年西安交通大学第十三届教学成果奖(特等奖)
2013年陕西省自然科学优秀学术论文奖(一等奖)
2012年陕西省优秀博士论文、全国百篇优秀博士论文提名
2010年西安交通大学校级优秀博士论文
2009年唐文治特别优秀研究生奖学金、省级优秀毕业生(博士研究生)
2008年应用材料奖学金、优秀研究生标兵称号
2007年潘文渊奖学金




站点收藏
类别/站点
国际电介质研究中心/电子陶瓷与器件教育部重点实验室
西安交通大学
交大思源兵马俑BBS
电子与信息学部
电子科学与工程学院
国家留学基金委
美国陶瓷学会会刊
欧陶
材料研究快报Materials Research Bulletin
材料研究快报





个人简介(CV) - 周 迪基本信息(Basic Information)
周迪,教授、博士生导师、西安交通大学电子科学与工程学院副院长/电子材料党支部书记/多功能材料与结构教育部重点实验室副主任。2004年获得“电子科学与技术专业”工学学士学位和“应用数学专业”理学学士学位;2009年获得“微电子学与固体电子学”博士学位。2008年获西安交通大学“优秀研究生标兵”称号;2009年获得陕西省“优秀毕业生”称号;2010获得“西安交通大学优秀博士学位论文”奖励;2012获得“陕西省优秀博士学位论文”奖励及全国优秀博士论文提名;2013年获陕西省自然科学优秀学术论文奖一等奖;2015年获得Journal of Alloys and Compounds等杂志Outstanding Reviewer称号;2016年获陕西省青年科技新星称号;2016年获得美陶审稿人奖金(120美金);2017年连续获得Journal of the American Ceramic Society(美陶、Top2%)、Journal of the European Ceramic Society(欧陶)、Ceramic International等业内期刊杰出审稿人称号;2016及2018年多次获得 International Centre for Diffraction Data (ICDD) Certificate Award;2018年起担任电子元器件关键材料与技术专业委员会委员;2019年起担任中国电子学会元件分会委员;入选英国皇家化学会2019年度Top 1% 高被引中国作者;2020年入选国家QB计划;2020年起担任美陶副编(Associate Editor of the Journal of the American Ceramic Society)、材料研究快报编委(Editorial Board Member of Materials Research Bulletin)及先进电介质编委(Editorial Board Member of Journal of Advanced Dielectrics);2020年获得电子元器件关键材料专委会青年才俊奖;2020年获得陕西省电子学会科学技术奖自然科学一等奖(第一完成人);2021年获得陕西省高等学校科学技术奖一等奖(第一完成人);2021年起担任国际应用陶瓷技术副编(Associate Editor of International Journal of Applied Ceramic Technology)及美国化学学会应用材料与界面杂志顾问委员会委员(Editorial Advisory Board Member of ACS Applied Materials & Interfaces);2021年起任电气与电子工程师协会高级会员(IEEE Senior Member)。主持国家自然科学基金联合/面上/青年基金、陕西省国际合作项目、华为公司横向课题,作为研究骨干参与国家973计划、国家863计划、国家重点研发计划等,在微波介质结构性能调节分析、LTCC低温共烧陶瓷技术应用、谐振器滤波器及天线基板应用等方面取得一系列新颖的研究成果。在国际知名期刊发表科技论文200余篇(J Am Ceram Soc、J Eur Ceram Soc、J Mater Chem (A/C)、Energy Environ Sci、Chem Mater、Angew Chem Int Edit、Inorg Chem、Dalton Trans、Acta Mater、Appl Phys Lett等,其中第一作者文章60篇,通讯作者文章共126篇),总引用次数6000余次(Google Scholar H-index=42、SCI引用5000余次、ResearcherID H-index=39),申请中国发明专利25项(已授权17项),应邀为材料物理化学类四十余种国际著名期刊(Adv Energy Mater、Chem Mater、J Am Ceram Soc、J Eur Ceram Soc、硅酸盐学报等)审稿,担任印度理工学院(Indian Institute of Technology Madras)博士论文外审专家。多次参加功能陶瓷类国际学术会议(亚洲电子陶瓷会议Asian Meeting on Electroceramics、国际陶瓷会议International Conference on Ceramics、International Symposium on Integrated Functionalities(ISIF)等),获得国际衍射数据中心标准X射线衍射卡八项(PDF 60-482:Li0.5Ti0.4Nb0.45O2等,应邀提交另外4个卡片数据申请)。
欢迎具有电子科学与技术、材料科学与工程、化学、物理、数学等相关专业背景知识的同学报考硕士、博士研究生!
欢迎35岁以下青年才俊申报西安交大青年拔尖计划、青秀计划加盟本课题组!
本课题组的优势:
1、从不拖欠学生助研费用(略高于平均值);
2、从不吝惜科研花费(经费花到实处);
3、师生关系融洽、友爱互助;
4、导师长年工作于一线、具体指导学生实验;
5、导师海外合作广泛、可推荐学生去英美澳等实验室联合培养(CSC或校内项目);
6、导师会积极帮助高年级同学联系工作及出国深造事宜。
主要教授课程:《现代微分析导论》,主要包括光谱技术、X射线技术、电子显微学等内容;《表达与交流》,主要负责科技论文写作部分;《研究生英语实践》等课程。





工作经历(Work Experience)

2019.01-至今 教授 西安交通大学、电信学部、电子科学与工程学院(副院长)、电子材料研究所(EMRL)&国际电介质研究中心(ICDR)
2013.01-2019.01 副教授 西安交通大学、电子科学与技术系、电子材料研究所(EMRL)&国际电介质研究中心(ICDR)
2017.02-2018.04 研究助理 谢菲尔德大学、材料科学与工程系、功能材料与器件研究所
2015.12-2016.11 访问**** 谢菲尔德大学、材料科学与工程系、功能材料与器件研究所
2013.08-2014.08 副局长(挂职) 江阴市、临港经济开发区、经济发展局(第六批江苏科技镇长团)
2009.12-2013.01 讲师 西安交通大学、电子科学与技术系、电子材料研究所(EMRL)&国际电介质研究中心(ICDR)
__________________________________________________________________________________________________________________________
Since Jan.2019 Professor Xi'an Jiaotong University, School of Electronic Science and Engineering (Vice Dean),Electronic Materials Research Lab. & International Center for Dielectric Research
Jan.2013-Jan.2019 Associate Prof. Xi'an Jiaotong University, Department of Electronic Science and Technology, Electronic Materials Research Lab. & International Center for Dielectric Research
Feb.2017-Apr.2018 Research Associate The University of Sheffield, Department of Materials Science and Engineering, Functional Materials and Devices
Dec.2015-Nov.2016 Academic Visitor The University of Sheffield, Department of Materials Science and Engineering, Functional Materials and Devices
Aug.2013-Aug.2014 Jiangyin Harbor Economic Development District
Dec.2009-Feb.2013 Assistant Prof. Xi'an Jiaotong University, Electronic Materials Research Lab. & International Center for Dielectric Research





教育经历(Education Experience)

2004.09-2009.12 工学博士 西安交通大学 电子科学与技术
2008.09-2009.09 联合培养博士 美国宾州州立大学(PSU)、材料科学与工程系、材料研究所(MRL)
2000.09-2004.07 工学学士 西安交通大学 电子科学与技术
2002.09-2004.07 理学学士 西安交通大学 数学与应用数学
________________________________________________________________________________________________
Sep.2004-Dec.2009 Doctor of Engineering Xi'an Jiaotong University Electronics Science and Technology
Sep.2008-Sep.2009 Visiting Scholar Pennsylvania State University Materials Science and Engineering
Sep.2002-Jul.2004 Bachelor ofScience Xi'an Jiaotong University Mathematics and Applied Mathematics
Sep.2000-Jul.2004 Bachelor of Engineering Xi'an Jiaotong University Electronics Science and Technology




联系方式(Contact Information)

通讯地址:陕西省西安市雁翔路99号西安交通大学曲江校区西六楼309室
E-mail:zhoudi1220@mail.xjtu.edu.cn, zhoudi1220@gmail.com
Office Tel:+86-
Post code:710054





荣誉称号 (Honors)
2021年 陕西省高等学校科学技术奖一等奖
2021年Editorial Advisory Board Member of ACS Applied Materials & Interfaces
2021年Associate Editor ofInternational Journal of Applied Ceramic Technology
2021年中国仪表功能材料学会电子元器件关键材料专委会青年才俊奖
2020年Outstanding Reviewer -The American Ceramic Society
2020年the top 1% of highly cited authors in Royal Society of Chemistry journals, 2019
2020年 陕西省电子学会科学技术奖自然科学一等奖
2020年 Editorial Board Member ofJournal of Advanced Dielectrics
2020年 Associate Editor of theJournal of the American Ceramic Society
2020年 Editorial Board Member ofMaterials Research Bulletin
2019年Outstanding Reviewer -Journal of The American Ceramic Society

2019年Top 1% of authors, highly cited in the Royal Society of Chemistry journals in 2019
2018年Outstanding Reviewer -Journal of The American Ceramic Society
2018年International Centre for Diffraction Data(ICDD) Certificate Award
----in recognition of the significant contribution of 6 patterns to the Powder Diffraction File-Release 2018.
2017年Outstanding Reviewer -Journal of The American Ceramic Society (top 2%)
2017年Outstanding Reviewer -Journal of The European Ceramic Society
Outstanding Reviewer -Ceramics International
Outstanding Reviewer -Materials Research Bulletin
Outstanding Reviewer -Materials Chemistry and Physics
Outstanding Reviewer -Materials Letters
Outstanding Reviewer -Journal of Materiomics
2016年International Centre for Diffraction Data(ICDD) Certificate Award
2016年Journal of The American Ceramic Society2016 Reviewer Reward
2015年Outstanding Reviewer -Ceramics International- Achieved: November 2015
2015年Outstanding Reviewer -Journal of Alloys and Compounds- Achieved: September 2015
2015年Outstanding Reviewer -Materials Research Bulletin- Achieved: January 2015
2015年陕西省创新人才推进计划(青年科技新星)
2013年西安交通大学第十三届教学成果奖(特等奖)
2013年陕西省自然科学优秀学术论文奖(一等奖)
2012年陕西省优秀博士论文、全国百篇优秀博士论文提名
2010年西安交通大学校级优秀博士论文
2009年唐文治特别优秀研究生奖学金、省级优秀毕业生(博士研究生)
2008年应用材料奖学金、优秀研究生标兵称号
2007年潘文渊奖学金







科研进展(Research) - 周 迪研究兴趣(Research Interests)
1,介电常数k值系列化新型超低温烧结微波介质陶瓷材料。
从基础二元相图出发,以低共熔点单相组分为研究基础,根据电价相等、摩尔比匹配方式、按照化学剂量比设计配方,在Bi2O3-MoO3二元体系、Li2O-Bi2O3-MoO3三元体系、Li2O-Bi2O3-MoO3-V2O5四元体系等富铋的多元体系中,研发出涵盖低k材料(介电常数<20)、中k材料(介电常数20~45)及高k材料(介电常数>45)的一系列新型超低温烧结(烧结温度<660℃)微波介质陶瓷材料,其烧结温度远远低于常规意义的低温烧结微波介质陶瓷材料(900℃附近),且部分材料可以与低熔点的贱金属Al共烧匹配,开拓了Al电极在LTCC技术中的应用,并论证了Al电极取代Ag电极的可能性。(D. Zhou, et al., J. Am. Ceram. Soc. 2008, 91(10) 3419; 2009, 92(10) 2242; 2009, 92(12) 2931; 2010, 93(4) 1096; 2010, 93(8) 2147; 2011, 94(2) 348; 2011, 94(3) 802)
组分
烧结温度(℃)
与Al
反应
密度
(g/cm3)
介电常数εr
谐振频率f (GHz)
品质因数Q×f(GHz)
温度系数TCF(ppm/℃)

Li2MoO4
540
No
2.90 (95.5%)
5.5
13.05
46,000±1000
-160±9

Li2WO4
650
No
4.34 (95.1%)
5.5
15.70
62,000±1000
-140±6

Li3InMo3O12
630
No
4.01 (96.2%)
9.8
15.02
36,000±3,000
-70 ±4

Li2Zn2Mo3O12
630
No
4.27 (96.0%)
11.1
14.63
70,000±5,000
-90±7

Li8Bi2Mo7O28
540
No
4.29 (95.7%)
13.6
9.21
8,000±400
-60±5

Bi2Mo3O12
610
No
5.76 (93.0%)
19
7.58
21,800±800
-210±8

(KBi)1/2MoO4
630
No
4.88 (95.0%)
37
7.50
4,000±300
+120±3

Bi2Mo2O9
620
No
6.25 (96.1%)
38
6.30
12,500±500
+30±3

(LiBi)0.5MoO4
560
Yes
5.48 (96.7%)
44.4
5.52
3,200±300
+250±10

(Li,Bi)(Mo,V)O4
650
No
>95%
81
3.75
8,000±400
-90~+9.7


2, ABO4(A2+= Ca2+、(Li0.5Bi0.5)2+、(Na0.5Bi0.5)2+;A3+=Bi3+;B5+=Nb5+、V5+、Sb5+、Ta5+;B6+=Mo6+、W6+)型材料铁弹-顺弹相变、反铁电-铁电相变研究及其对性能的影响。
早在1962年,Roth等人就指出低温正交相的α-BiNbO4会在1020℃以上不可逆地转变成高温三斜相β-BiNbO4,同时伴随着晶胞体积减小,结构更加稳定。我们在实验中发现,由于陶瓷样品中残留应力的存在,当加热到700℃后,双层键合的[NbO6](铌氧八面体链)逐渐被打开且被一层Bi原子层分开,β-BiNbO4逐渐转变成α-BiNbO4。当热处理温度升高至1020℃后,相邻的两层[NbO6]又重新键合在一起,α-BiNbO4再次转变成β-BiNbO4。相应的差热分析、热膨胀系数及介电温谱数据均支持这一结果。由此可见,能量与应力变化驱使相邻两层[NbO6]的键合与分离是促使BiNbO4相变发生的主要原因。键合在一起的两层[NbO6]在一定温度区间(700℃~1020℃)以及较长的保温时间(700℃下1000分钟)下打开,从而推翻传统研究中对BiNbO4相变的认识,对其性能结构研究提供了更加丰富的数据(D. Zhou, et al., Appl. Phys. Lett., 2007, 90(17) 172910)。近年来BiVO4材料因其优异的介电特性和光催化特性受到广泛关注。一般认为BiVO4材料具有三种不同结构:四方锆石、四方白钨矿及单斜白钨矿结构。单斜白钨矿结构BiVO4在255℃高温下,发生可逆的铁弹-顺弹二阶相变转变成四方白钨矿相。根据Hazen等人在Science上的报道,此相变也可以通过外加应力诱导发生。本论文工作中通过新颖的不等价复合离子取代的方式,将(Li1/2Bi1/2)2+、(Na1/2Bi1/2)2+和(K1/2Bi1/2)2+复合离子引入八配位环境的A位,将Mo6+离子引入四配位环境的B位,成功地在单斜白钨矿结构中引入较大内应力。随着离子取代量的增加,内应力逐渐增大,晶格结构逐渐从单斜相转变为四方相,从而将铁弹-顺弹相变温度从255℃逐渐降低到室温附近,形成一系列白钨矿型的新型固溶体,如:(Li0.5xBi1-0.5x)(MoxV1-x)O4、(Na0.5xBi1-0.5x)(MoxV1-x)O4等(D. Zhou, et al., Acta. Mater., 2011, 59(4) 1502; D. Zhou, et al., J. Mater. Chem., 2011, 21(45) 18412;应国际衍射数据中心(ICDD)邀请提交新材料的相关结构属性参数)。通过原位的变温XRD、变温Raman谱以及远红外反射谱表征与分析了其相变机理,在相变点附近组分获得极佳微波介电性能(介电常数介于77~82,Q×f值>8,000 GHz)(D. Zhou, et al., Inor. Chem., 2011, 50, 12733)。尤其是[(Li0.5Bi0.5)0.098Bi0.902][Mo0.098V0.902]O4组分,可以在650℃下烧结致密,且在此结温度下与Al、Cu金属电极材料共烧匹配,是具有潜在应用价值的新型高介电常数微波介质材料。
BiNbO4低温正交相与高温三斜相空间结构示意图 三斜相BiNbO4生坯的热收缩曲线 三斜相BiNbO4生瓷的介电温谱
(Li0.5xBi1-0.5x)(MoxV1-x)O4中晶胞参数随组分的变化趋势 典型单斜白钨矿与四方白钨矿结构示意图 LBMV陶瓷与Ag、Al及Cu粉共烧XRD图谱
xBi(Fe1/3Mo2/3)O4-(1-x)BiVO4体系微波介电常数随温度的变化趋势; xBi(Fe1/3Mo2/3)O4-(1-x)BiVO4体系微波品质因数Qf随温度的变化趋势
3, 应用多层共烧技术制备微波介质电容器及基板天线原型器件。
通过流延的方法制备出Bi2Mo2O9基生带,以贱金属Al作为内电极,通过丝网印刷与叠层的方法制备出六层的超低温(645℃)多层共烧电容器的原型器件(介质单层50 μm,Al电极单层12 μm)。通过对其微观结构的扫描电镜二次电子像(SEM)及能谱(EDS)分析、室温频谱、低频温谱以及P-E回线的测量,发现流延方法制备加工的Bi2Mo2O9层状样品具备与块材样品相当的介电性能。(D. Zhou, et al., J. Am. Ceram. Soc., 2010, 93(5) 1443)此项研究结果进一步拓展Al电极在LTCC领域中的应用,使之取代Ag电极成为可能。尝试使用低温烧结的BiNbO4陶瓷作为基板,通过丝网印刷的方法印制金属天线,设计成二维天线阵列,网络分析仪的实际测量结果显示天线阵列在3.07 GHz的中心频率下其-10 dB衰减带宽达到34 MHz,与HFSS软件仿真结果吻合,(D. Zhou, et al., Mater. Sci. Eng. A, 2007, 460-461, 652)初步探索了高介电常数介质基板材料在微波频段的应用。
流延法制备多层共烧电容器制备流程图 645oC共烧Bi2Mo2O9基六层电容器(Al作内电极)
4, 高品质因数微波介质陶瓷材料的研发。
在现代通信中,微波介质陶瓷被广泛地应用在谐振器、滤波器、介质基板、介质天线和介质波导回路等领域中。本课题组近年来开发了一系列拥有自主知识产权的低、中、高介电常数的微波介质陶瓷材料体系,性能列表如下:
K12~K15, 40,000 GHzoC, 1250oC oC;
K16~K24, 40,000 GHzoC, 1250oC oC;
K32~K35, 45,000 GHzoC, 1250oC oC;
K43~K45, 30,000 GHzoC, 1350oC oC;
K65~K82, 9,000 GHzoC, 1300oC oC;


陶瓷样品宏观图片




研究项目(Research Project)


年限
项目名称
项目来源
个人角色

2018-2021
XXXX研究
XXXX项目
负责人

2018-2021
高性能XXXX介质及元器件开发
国家XXXX计划
骨干

2017-2018
XXXX研究
XXXX公司
负责人

2017-2019
Bi基微波介质材料结构-极化机理-介电性能关系研究
自然科学基金委联合基金项目
负责人

2016-2018
微波介质材料结构/性能调控及其应用
西安交大青年教师跟踪项目
负责人

2016-2018
A/B位联合取代白钨矿类微波介质陶瓷结构/性能调控机理研究
陕西省青年科技新星项目
负责人

2013-2015
低烧陶瓷湿化学法合成机理及其微波介电性能研究
自然科学基金委青年基金项目
负责人

2010-2011
XXXX材料研究
XX公司(横向)
负责人

2010-2013
信息功能陶瓷及相关元器件的基础问题研究
973课题
参与

2009-2012
微波介质材料的微结构分析和宽频段介电谱测试分析
自然科学基金面上项目
参与

2006-2008
中高K值LTCC微波介质材料与集成技术研究
863课题
参与

2012-2015
量子点敏化太阳能电池的制备、界面态调控及电子注入可调机理
自然科学基金面上项目
参与









研究团队(Group) - 周 迪研究队伍(Research Group)
博士生导师:

周迪
————————————————————————————————————————————————————————————————————
博士研究生:

李文博,2015年-2018年,BaTiO3基储能陶瓷材料。李文博同学在读期间曾获得“姚熹铁电奖学金”和研究生国家奖学金,在JMCA、ACS Applied Energy Materials、美陶等杂志发表多篇论文;毕业后曾就职于榆林学院,目前入选西安交大青秀计划。Email:@qq.com, QQ号:。

郭欢欢,2016年-2020年。本科毕业于景德镇陶瓷学院材料科学与工程学院无机非金属材料工程专业;2016年获得桂林理工大学材料科学与工程学院材料科学与工程专业硕士学位;2016年9月起于西安交通大学攻读博士学位,主要研究方向为高品质因数微波介质陶瓷材料与器件,已在JMCC、ACS AMI、美陶、欧陶等杂志发表多篇学术论文,2019年获得“姚熹铁电奖学金”;2020年毕业后就职于桂林理工大学。E-mail:@qq.com。


郝澍钊,2017年-2021年。本科毕业于河南科技大学,硕士阶段就读于桂林理工大学,现于周迪课题组从事超低温烧结微波介质陶瓷材料的研究,在美陶、欧陶发表多篇学术论文,于2017年获得111论文奖励。邮箱:haoshuzhao@126.com,QQ:**。

王鹏建,2017年-2021年。本科毕业于天水师范学院,硕士阶段就读于兰州理工大学,现于周迪老师课题组从事有机/无机复合电介质储能材料的研究,2021年毕业后留任课题组青秀计划,在Nano Energy, JMCA等杂志发表多篇学术论文。邮箱 :@qq.com,QQ:。


李静,2018级博士生(春、2016级长学制)。本科毕业于陕西科技大学材料科学与工程学院,现就读于西安交通大学电子科学与工程学院。研究生期间师从周迪老师课题组从事研究磁电复合材料和吸波材料,2018年硕转博继续攻读博士学位,曾获得“国家奖学金”和国家“111”计划论文奖励奖学金;在JMCA/JMCC、Scripta Mater等期刊上发表多篇学术论文。邮箱:lijinging1225@qq.com;QQ:。

杜超,2019级博士生,硕士毕业于兰州大学,现就读于西安交通大学电子科学与工程学院,主要研究方向为电磁仿真及介质谐振器天线等,在Nanoscale,JMCC,美陶等杂志发表多篇学术论文,Email:duch2016@163.com。

郭铁柱,2019级博士生,硕士毕业于华南理工大学,现就读于西安交通大学电子科学与工程学院,主要研究方向为新型超级电容器,在Science China Materials,Small Structures等杂志发表多篇学术论文。

吴芳芳,2019级博士生,硕士毕业于河北工业大学,现就读于西安交通大学电子科学与工程学院,主要研究方向为褐钇铌矿型高品质因数微波介质陶瓷等。

Amir Mahmood,2019级博士生, 2018年毕业于西安交通大学获得硕士学位,现就读于西安交通大学电子与信息学部电子科学与工程学院,主要研究方向为SrMoO4基白钨矿型微波介质陶瓷等。

郭艳,2020级博士生,硕士毕业于河南理工大学,现就读于西安交通大学电子科学与工程学院,主要研究方向为面向储能应用的有机无机复合膜。

李达,2020级博士生(工程博士),硕士毕业于陕西科技大学,现就读于西安交通大学电子科学与工程学院,主要研究方向为(Na,Bi)TiO3基储能电容器材料,在JMCA、Chemical Engineering Journal等杂志发表多篇学术论文。

赵维琛,2020级博士生(春),2020年硕转博,现就读于西安交通大学电子科学与工程学院,主要研究方向为(K,Na)NbO3基储能电容器材料。

————————————————————————————————————————————————————————————————————
硕士研究生:
贺斌 2012年-2014年,离子极化率计算;
席海红(联合培养) 2012年-2015年,超低温烧结微波介质陶瓷研究;
李文博(转博) 2013年-2016年,低损耗介质及储能材料;

赵金雄,2014年-2017年,电致变色及电池材料(兰州电网公司)。2014年本科毕业于陇东学院物理学专业,并获“优秀毕业生”称号;2017年硕士毕业于西安交通大学电子与通信工程专业,师从周迪副教授和赵志刚研究员,期间分别获“优秀研究生”、“优秀毕业生”称号,并荣获陕西省高新杯团体三等奖;2017年毕业至今,就职于国网甘肃省电力公司电力科学研究,截至目前,共发表论文16篇(Sci检索2篇,EI检索10篇),其中第一作者文章11篇,申请专利51项(已授权22项),承担国网公司总部课题1项,甘肃省电力公司课题2项。

郭丹,2015年-2018年(现就职于上海法雷奥集团)。在Journal of Materials Chemistry C及Inorganic Chemistry等杂志发表文章;2015-2016学年获得姚熹铁电奖学金、西安交通大学优秀研究生以及111引智基地论文奖励;2016-2017学年获得CASC奖学金一等奖、西安交通大学优秀研究生以及111引智基地论文奖励。
Amir Mahmood 2015年-2018年,CaMoO4基低温烧结微波介质陶瓷,本课题组读博;
李静 (女、转博) 2016年-2017年,高频磁电多功能材料;
李文艺 2019年-2022年,BiFeO3基高储能密度陶瓷电容器研究;
李睿韬(转博) 2019年-2022年,新型Bi基高介电常数陶瓷研究;
任佳佳(女、转博) 2019年-2022年,新型Bi基高储能密度陶瓷电容器研究;
徐照镔 2020年-2023年,堇青石基低K值微波介质陶瓷研究;
李祥坤 2020年-2023年,高介低损型有机无机复合高频基板;
张皓博 2020年-2023年,低损耗型介电可调材料与器件研究;
鲍子妍(女) 2020年-2023年,基于新型高频复合基板的天线研究;
————————————————————————————————————————————————————————————————————
课题组活动相册:

2021年2月课题组合影

2021年2月王鹏建博士毕业答辩

2020年12月送别郭欢欢博士

2020年11月郭欢欢博士毕业答辩

2020年冬学生活动掠影

2020年秋中国西部科技创新港与研一新同学

2020年7月李静婚礼

2019年12月课题组小聚

2019年9月学生活动掠影

2019年9月中国西部科技创新港与研一新同学

2018年11月李文博博士毕业答辩

————————————————————————————————————————————————————————————————————
本科毕业设计学生:
胡逸 2011年,“锂基低温烧结陶瓷的制备和研究”;
吴颖 2012年,“Ti基频率稳定型高性能微波介质陶瓷研究”,(保送至上海硅酸盐研究所);
何峰 2013年,“湿化学方法制备Bi基低烧材料粉体及陶瓷”;
修超 2013年,“A位取代对白钨矿结构CaMoO4陶瓷微波介电性能的影响”;
张一丁 2015年,“中K值高品质因数微波介质陶瓷研究”(2015届校级优秀毕业设计~1/90,美国宾大);
翟晓柳(女) 2015年,“低K值超低温共烧微波介质研究"(美国加州大学Irvine分校继续深造);
李文艺 2019年,(本课题组读硕)
李睿韬 2019年,(本课题组读硕)
马柯君 2021年,离子取代对钨青铜矿结构微波介质陶瓷性能影响
————————————————————————————————————————————————————————————————————
信息新蕾计划:
吴颖 2011-2012年 (该项目获得西安交通大学第十三届教学成果奖特等奖);
周洪涛 2014-2016年 (合格);
蒙渊 2020-
————————————————————————————————————————————————————————————————————
本科生科研训练计划:
张一丁、于吉军、任再煌、孙春来, 2012-2013年(合格);
邹慎立、蒋孟, 2012-2013年(合格);
翟晓柳、郑旭、吴芮, 2013-2015年(优秀);
黄维洲、梁力文、母国甲、蔡天兵 2020-2021年(良好);
曹寒驰、黄凌奥、邓迎春、高晨翔 2020-2021年(终止);
————————————————————————————————————————————————————————————————————
本科生开放实验课程(面向5G/6G用微波介质陶瓷):
相辰洋 2019-2020年;
黄维洲 2019-2020年;
吴旻谚(中国台湾) 2019-2020年;
————————————————————————————————————————————————————————————————————







论文专利(Publication and Patents) - 周 迪ResearcherID
Welcome to my Publons/ResearcherID :https://publons.com/researcher/862678/
Welcome to my Google Scholar:https://scholar.google.com/citations?user=9eJiku0AAAAJ&hl=zh-CN




近年代表作(Selected Publication)
[1] High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture,D Zhou, LX Pang, DW Wang, C Li, BB Jin, IM Reaney,Journal of Materials Chemistry C 5 (38), 10094-10098, 2017
[2] Novel temperature stable high-εr microwave dielectrics in the Bi2O3–TiO2–V2O5 system,D Zhou, D Guo, WB Li, LX Pang, X Yao, DW Wang, IM Reaney,Journal of Materials Chemistry C 4 (23), 5357-5362, 2016
[3] Microwave Dielectric Properties of Li2WO4 Ceramic with Ultra‐Low Sintering Temperature,D Zhou, CA Randall, LX Pang, H Wang, J Guo, et al.,Journal of the American Ceramic Society 94 (2), 348-350, 2011
[4] Microwave Dielectric Ceramics in Li2O–Bi2O3–MoO3 System with UltraLow Sintering Temperatures,D Zhou, CA Randall, H Wang, LX Pang, X Yao,Journal of the American Ceramic Society 93 (4), 1096-1100, 2010
[5] Bi2O3–MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric,D Zhou, H Wang, LX Pang, CA Randall, X Yao,Journal of the American Ceramic Society 92 (10), 2242-2246, 2009




申请与授权专利(Patents)
[1]一种低温烧结铋基微波介质陶瓷材料及其制备、中国发明专利、CNC、2008年授权、汪宏 周迪 张磊 姚熹;
[2]一种低温烧结的Ti基微波介质陶瓷材料及其制备、中国发明专利、CNC、2010年授权、汪宏 庞利霞 周迪 姚熹;
[3]一种低温烧结LTCC微波介质陶瓷材料及其制备方法、中国发明专利、CNB、2010年授权、汪宏 周焕福 丁晓言 庞利霞 周迪 姚熹;
[4]铋基钼基超低温烧结微波介质陶瓷材料及其制备、中国发明专利、CNB、2011年授权、汪宏周迪姚熹 庞利霞;
[5]一种白钨矿型钼基超低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL1.1、20121128日授权周迪汪宏 姚熹 张高群 庞利霞 吴新光 郭靖;
[6]一种硅铍石超低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL7.7、20121128日授权周迪汪宏 姚熹 庞利霞 吴新光 郭靖 张高群;
[7]一种钼基超低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL6.2、20130417日授权周迪 汪宏 姚熹 庞利霞 吴新光 郭靖 张高群;
[8]一种铋基钒基低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL9.2、20130522日授权周迪汪宏 姚熹 郭靖 张高群 吴颖 吴新光;
[9]钼基钛基温度稳定型微波介质陶瓷材料及其制备方法、中国发明专利、CNB、2013年授权、汪宏 郭靖 周迪 姚熹;
[10]一种低温烧结微波介质陶瓷基板材料及其制备、中国发明专利、CNB、2013年授权、汪宏 吴新光 周迪 代伟 陈月花 曾一;
[11]一种低温烧结的铋基微波介质陶瓷及其制备方法、中国发明专利、ZL8.X、20131106日授权周迪庞利霞郭靖 姚熹;
[12]一种超低温烧结的复合微波介质陶瓷材料及其制备方法、中国发明专利、ZL6.3、20140903日授权周迪庞利霞郭靖 姚熹;(转让)
[13]一种白钨矿型微波介质陶瓷材料及其制备方法、中国发明专利、ZL9.2、2014年授权、李金艳 梁英周迪
[14] 一种低温烧结温度稳定型微波介质陶瓷材料及其制备方法、中国发明专利、ZL4.5、20151028日授权周迪 席海红 贺斌 谢会东;
[15] 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法、中国发明专利、ZL6.7、20160330日授权周迪 席海红 贺斌 谢会东;(转让)
[16] 一种温度稳定型中K值微波介质陶瓷及其制备方法、中国发明专利、ZL8.7、20160824日授权周迪 张一丁;(转让)
[17] 一种中介电常数低损耗微波介质陶瓷及其制备方法、中国发明专利、ZL1.9、20170912日授权周迪 李文博 庞利霞 赵金雄;
[18] Ti基低损耗中K值微波介质陶瓷及其制备方法、中国发明专利、ZL8.X、20171031日授权周迪 李文博 赵金雄 姚熹;
[19]一种钒基温度稳定型微波介质陶瓷及其制备方法、中国发明专利、ZL4.6、20180717日授权、周迪 李文博 姚熹。(转让)




2006-2021文章列表(Publication List)



2021
[1] Di Zhou*, Huan-Huan Guo, Mao-Sen Fu, Xiao-Gang Yao, Hui-Xing Lin, Wen-Feng Liu, Li-Xia Pang, Charanjeet Singh, Sergei Trukhanovh, Alex Trukhanovh, & Ian M. Reaney*, Anomalous Dielectric Behaviour at the Monoclinic to Tetragonal Phase Transition in La(Nb0.9V0.1)O4, Inorganic Chemistry Frontiers, 2021, 8, 156-163.
[2] Guo, Huanhuan; Fu, Maosen; Zhou, Di*; Du, Chao; Wang, Pengjian; Pang, Li-Xia; Liu, Wenfeng; Sombra, Antonio Sergio Bezerra ; Su, Jinzhan, Design of High Efficiency and Gain Antenna Using Novel Low Loss, Temperature Stable Li2Ti1-x(Cu1/3Nb2/3)xO3 Microwave Dielectric Ceramics, ACS Applied Materials & Interfaces, 2021, 13, 1, 912–923.
[3] Shu-Zhao Hao, Di Zhou,* Chao Du, Li-Xia Pang, Charanjeet Singh, Sergei Trukhanovd, and Alex Trukhanov, Antonio Sergio Bezerra Sombra, Jobin Varghese, Qiang Li, Xiu-Qun Zhang, Temperature stable x(Na0.5Bi0.5)MoO4-(1-x)MoO3 composite ceramics with ultra-low sintering temperatures and low dielectric loss for dielectric resonator antenna applications, ACS Appl. Electron. Mater, 2021, accepted.
[4] Chao Du, Di Zhou,* Huan-Huan Guo, Yong-Qiang Pang, Hong-Yu Shi, Wen-Feng Liu, Charanjeet Singh, Sergei Trukhanov, Alex Trukhanov, and Zhuo Xu, Active Control Scattering Manipulation for Realization of Switchable EIT-like Response Metamaterial, OpticsCommunications, 2021, 483, 126664.
[5] Chao Du, Mao-Sen Fu, Di Zhou,* Huan-Huan Guo, He-Tuo Chen, Jian Zhang Jun-Ping Wang, Shao-Fei Wang, Hai-Wen Liu, Wen-Feng Liu, Long Li and Zhuo Xu, Dielectric Resonator Antenna with Y3Al5O12 Transparent Dielectric Ceramics for 5G Millimeter-Wave Applications, Journal of the American Ceramic Society, 2021, accepted.
[6] Da Li, Di Zhou,* Wenyuan Liu, Peng-Jian Wang, Yan Guo,Xiao-Gang Yao, Hui-Xing Lin, Enhanced Energy Storage Properties Achieved in Na0.5Bi0.5TiO3-Based Ceramics via Composition Design and Domain Engineering, Chemical Engineering Journal, 2021, 419, 129601.
[7] Wen-Bo Li, Di Zhou,* Wen-Feng Liu, Jin-Zhan Su, Fayaz Hussain, Da-Wei Wang, Ge Wang, Zhi-Lun Lu, and Qiu-Ping Wang, High-Temperature BaTiO3-based ternary dielectric multilayers for Energy Storage Applications with extreme high efficiency, Chemical Engineering Journal, 2021, 414, 128760.
[8] Tiezhu Guo, Di Zhou,* Wenfeng Liu and Jinzhan Su, Recent advances in all-in-one flexible supercapacitors, Science China Materials, 2021, 64(1): 27–45.
[9] Tiezhu Guo, MaoSen Fu, Di Zhou,* Lixia Pang, Jinzhan Su, Huixing Lin, Xiaogang Yao, and Antonio Sergio Bezerra Sombra, Flexible Ti3C2Tx/Graphene Films with Large-sized Flakes for Supercapacitors, Small Structures, 2021, https://doi.org/10.1002/sstr..
[10] Li-Min Wang, Qing-Xiang Liu, Zhou Di*, Dielectric and energy storage properties of the (1-x)BaTiO3-xBi(Li1/3Hf2/3)O3 (0.08≤x≤0.14) ceramics, Materials Letters, 2021, 283, 128823.
[11]Y Ji, K Song, S Zhang, Z Lu, G Wang, L Li, Di Zhou, D Wang, IM Reaney, Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna, Journal of the European Ceramic Society, 2021, 41, 424-429.
[12] Bing Liu, Lei Li, Kai Xin Song, Min Min Mao, Zhilun Lu, Ge Wang, Linhao Li, Dawei Wang, Di Zhou, Antonio Feteira, Ian M. Reaney, Enhancement of densification and microwave dielectric properties in LiF ceramics via a cold sintering and post-annealing process, Journal of the European Ceramic Society, 2021, 41, 1726–1729.
[13] Dawei Wang, Linhao Li, Juan Jiang, Zhilun Lu, Ge Wang, Kaixin Song, Di Zhou, Ian M. Reaney, Cold sintering of microwave dielectric ceramics and devices, Journal of Materials Research, 2021, 36[2] ? 333-349.
[14] Bing Liu, Ke Sha, Ying Qiang Jia, Yu Hui Huang, Cheng Chao Hu,Lei Li, Da Wei Wang, Di Zhou, Kai Xin Song, High quality factor cold sintered LiF ceramics for microstrip patch antenna applications, Journal of the European Ceramic Society, 2021, 41[9], 4835-4840.
[15] Wang, Ge; Lu, Zhilun; Li, Yong; Li, Linhao; Ji, Hongfen; Feteira, Antonio; Zhou, Di; Wang, Dawei; Zhang, Shujun; Reaney, Ian, High Energy Density Electroceramic Capacitors: Current Status and Future Perspectives, Chemical Reviews, 2021, 121, 6124?6172.
[16] R.G.M. Oliveira, J.E.V.de Morais1, D.C. Souza, M.A.S. Silva1, D.X. Gouveia, S. Trukhanov, A. Trukhanov, L. Panina, C. Singh, D. Zhou, A.S.B. Sombra, High-bandwidth microwave dielectric resonator antennas from BiVO4/ZnO composites, Journal of the Australian Ceramic Society, 2021, 57:369–377.
[17] Jasbir Singh, Charanjeet Singh, Dalveer Kaur, Sukhleen Bindra Narang, Rajshree B. Jotania, Ebtesam Ateia, Amrin Kagdi, Rajat Joshi, A.S.B. Sombra, Di Zhou, Sergei Trukhanov, Larrisa Panina, Development of doped BaeSr hexagonal ferrites for microwave absorber applications: Structural characterization, tunable thickness, absorption peaks and electromagnetic parameters, Journal of Alloys and Compounds, 2021, 855, 157242.
[18] A.V. Trukhanov, D.A. Vinnik, E.A. Trofimov, V.E. Zhivulin, O.V. Zaitseva, S.V. Taskaev, Di Zhou, K.A. Astapovich, S.V. Trukhanov, Yujie Yang, Correlation of the Fe content and entropy state in multiple substituted hexagonal ferrites with magnetoplumbite structure, Ceramics International, 2021, 47, 17684-17692.
[19] Denis A. Vinnik, Andrey Yu. Starikov, Vladimir E. Zhivulin, Kseniya A. Astapovich, Vitaliy A. Turchenko, Tat'yana I. Zubar, Sergei V. Trukhanov, Jaroslav Kohout, Tomas Kmjec?, Olena Yakovenko, Lyudmila Matzui, Antonio Sergio B. Sombra, Di Zhou, Rajshree B. Jotania, Charanjeet Singh, Yujie Yang, and Alex V. Trukhanov,Changes in the Structure, Magnetization, and Resistivity of BaFe12?xTixO19, ACS Appl. Electron. Mater, 2021, 3, 1583?1593.
[20] D.A. Vinnik, A.Yu. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T. I. Zubar, S.V. Trukhanov, J. Kohout, T. Kmje?, O. Yakovenko, L. Matzui, A.S. B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Structure and magnetodielectric properties of titanium substituted barium hexaferrites, Ceramics International, 47 (2021) 17293–17306
[21] D. A. Vinnik, V. E. Zhivulin, D. P. Sherstyuk, A. Yu. Starikov, P. A. Zezyulina, S. A. Gudkova, D. A. Zherebtsov, K. N. Rozanov, S. V. Trukhanov, K. A. Astapovich, A. S. B. Sombra, D. Zhou, R. B. Jotania, C. Singh and A. V. Trukhanov, Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites, J. Mater. Chem. C, 2021, 9, 5425
[22] D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Electromagnetic properties of zincenickel ferrites in the frequency range of 0.05-10 GHz, Materials Today Chemistry, 20 (2021) 100460
[23] Hai-Wen Liu,* Hong-Liang Tian, Chao Du, Tao-Tao Huang, Zhen-Yu Zhao, and Di Zhou, Dual-Band Filtering Dielectric Antenna Using High-Quality-Factor Y3Al5O12 Transparent Dielectric Ceramic, Advanced Engineering Materials, 2021, accepted.


2020(0、11、23)
[1] Peng-Jian Wang, Di Zhou,* Huan-Huan Guo, Wen-Feng Liu, Jin-Zhan Su, Sergei Trukhanov, Alex Trukhanov, Significantly Enhanced Electrostatic Energy Storage Performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 Nanocomposites, Nano Energy, 2020, 78, 105247.
[2] Peng-Jian Wang, Di Zhou,* Huan-Huan Guo, Wen-Feng Liu, Jin-Zhan Su, Sergei Trukhanov, Alex Trukhanov, Significantly Enhanced Energy Density of Flexible Polymer Composites by Core-Shell BaTiO3@MgO Stuctures as Fillers, Journal of Materials Chemistry A, 2020, 8, 11124–11132.(This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers)
[3] Jing Li, Di Zhou,* Pengjian Wang, Wenfeng Liu, Jinzhan Su, Raspberry-like LiFe5O8 nanoparticles embed on MoS2 microflower with high-performance microwave absorption, Journal of Materials Chemistry A, 2020, 8, 20337 - 20345.
[4] Huan-Huan Guo, Di Zhou,* Chao Du, Peng-Jian Wang, Wen-Feng Liu, Li-Xia Pang, Qiu-Ping Wang, Jin-Zhan Su, Charanjeet Singh and Sergei Trukhanov, Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications, Journal of Materials Chemistry C, 2020, 8, 4690-4700. (Front cover paper,入选Lunar New Year collection 2021.)
[5] Chao Du, Huan-Huan Guo, Di Zhou,*He-Tuo Chen, Jian Zhang, Wen-Feng Liu, Jin-Zhan Su and Hai-Wen Liu, Dielectric Resonator Antennas based on High Quality Factor MgAl2O4 Transparent Dielectric Ceramics, Journal of Materials Chemistry C, 2020, 8, 14880-14885.
[6] Chao Du, Di Zhou,* Huan-Huan Guo, Yong-Qiang Pang, Hong-Yu Shi, Wen-Feng Liu, Jin-Zhan Su, Charanjeet Singh, Sergei Trukhanov, Alex Trukhanov, Larissa Panina and Zhuo Xu, Ultra-broadbandterahertx metamaterials coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating, Nanoscale, 2020, 12, 9769-9775.
[7] Huan-Huan Guo, Di Zhou,* Wen-Feng Liu, Li-Xia Pang, Da-Wei Wang, Jin-Zhan Su, and Ze-Ming Qi, Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Bi, Ce)VO4 Solid-Solution Ceramics, Journal of the American Ceramic Society,2020, 103[1], 423-431.
[8] Jing Li, Di Zhou,* Enhanced Microwave Absorption of Reduced Graphene Oxide/Ni0.4Zn0.4Co0.2Fe2O4 Composite at Ultrathin Thickness, Journal of Electronic Materials, 2020, 49[3], 1721-1727.
[9] Shu-Zhao Hao, Di Zhou,* Fayaz Hussain, Wen-Feng Liu, Jin-Zhan Su, Da-Wei Wang, Qiu-Ping Wang, Ze-Ming Qi, Charanjeet Singh and Sergei Trukhanov, Spectra analysis and microwave dielectric properties of a novel x(NaBi)0.5MoO4-(1-x)Bi2(MoO4)3 ceramics with low sintering temperature, Journal of the European Ceramic Society, 2020, 40[10], 3569-3576.
[10] Shu-Zhao Hao, Di Zhou,* Fayaz Hussain, Jin-Zhan Su, Wen-Feng Liu, Da-Wei Wang, Qiu-Ping Wang and Ze-Ming Qi, Novel Scheelite-Type [Ca0.55(Nd1-xBix)0.3]MoO4(0.2Journal of the American Ceramic Society, 2020, 103, 7259–7266.
[11] Lei Zhang, Wen-Bo Li, Li-Xia Pang,* Di Zhou,* Extreme high energy storage efficiency in perovskite structured (1-x)(Ba0.8Sr0.2)TiO3-xBi(Zn2/3Nb1/3)O3 (0.04≤x≤0.16) ceramics, Journal of the European Ceramic Society,2020, 40[8], 3343-3347.
[12] Lu, Yumeng;Su,Jinzhan*; Shi, Jinwen; Zhou Di, Surface recombination passivation of BiVO4 photoanode by synergistic effect of cobalt/nickel sulfide cocatalyst, ACS Applied Energy Materials, 2020, 3[9] 9089–9097.
[13] Qianbi Lin, Kaixin Song, Bing Liu, Hadi Barzegar Bafrooei, Di Zhou, Weitao Su, Feng Shi, Dawei Wang, Huixin Lin, Ian M Reaney, Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A= Sr, Ba) ceramics for 5G applications, Ceramic International, 2020, 46 (1), 1171-1177.
[14] Dawei Wang, Shiyu Zhang, Ge Wang, Yiannis Vardaxoglou, Will Whittow, Darren Cadman, Di Zhou, Kaixin Song, Ian M Reaney, Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas, Applied Materials Today, 2020, 18, 100519
[15] Nurul Aida Mohamed, Javad Safaei, Aznan Fazli Ismail, Muhammad Najib Khalid, Muhammad Fareez Amir Mohd Jailani, Mohamad Firdaus Mohamad Noh, Nurul Affiqah Arzaee, Di Zhou, Jagdeep S. Sagu and Mohd Asri Mat Teridi, Boosting photocatalytic activities of BiVO4 by creation of g-C3N4/ZnO@BiVO4 Heterojunction, Materials Research Bulletin, 2020, 125, 110779.
[16] Moustafa A. Darwish, Alex V. Trukhanov, Oleg S. Senatov, Alexander T. Morchenko, Samia A. Saafan, Ksenia A. Astapovich, Sergei V. Trukhanov, Ekaterina L. Trukhanova, Andrey A. Pilyushkin, Antonio Sergio B. Sombra, Di Zhou, Rajshree B. Jotania, and Charanjeet Singh, Investigation of AC-Measurements of Epoxy/Ferrite Composites, Nanomaterials, 2020, 10, 492.
[17] Tatiana Zubar, Valery Fedosyuk, Daria Tishkevich, Oleg Kanafyev, Ksenia Astapovich, Artem Kozlovskiy, Maxim Zdorovets, Denis Vinnik, Svetlana Gudkova, Egor Kaniukov, Sergio Sombra, Di Zhou, Rajshree B. Jotania, Charanjeet Singh, Sergei Trukhanov*, Alex Trukhanov, The effect of heat treatment on the microstructure and mechanical properties of 2D nanostructured Au/NiFe system, Nanomaterials, 2020, 10, 1077.
[18] Dawei Wang, Beatia Siame, Shiyu Zhang, Ge Wang, Xingshen Ju, Jinglei Li, Zhilun Lu, Yiannis Vardaxoglou, Will Whittow, Darren Cadman, Shikuan Sun, Di Zhou, Kaixin Song, Ian M Reaney, Direct Integration of Cold Sintered, Temperature-Stable Bi2Mo2O9-K2MoO4 Ceramics on Printed Circuit Boards for Satellite Navigation Antennas, Journal of the European Ceramic Society,2020, 40, 4029–4034.
[19] Fayaz HUSSAIN, Amir Khesro, Zhilun Lu, Nouf Alotaibi, AHMAD AZMIN MOHAMAD, Ge Wang, Di Zhou, Dawei Wang, Acceptor and Donor, Dopants in Potassium Sodium Niobate Based Ceramics, Frontiers in Materials, 2020, 7, 160.
[20] A.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, M.A. Almessiere, Y. Slimani, A. Bayka, A.S.B. Sombra, Di Zhou, R.B. Jotania, C. Singh, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni-Co spinels, Journal of Alloys Compound, 2020, 841, 155667
[21] Ronaldo Glauber Maia de Oliveira, D; D. C. Souza; J. E. V. de morais; G. S. Batista; M. A. S. Silva; D. X. Gouveia; S. Trukhano; A. Trukhanov; L. Panina; C. Singh; D. Zhou; A. S. B. Sombra, "High Thermal Stability of RF Dielectric Properties of BiVO4 Matrix with added ZnO", Journal of Materials Science: Materials in Electronics, 2020, 31:13078–13087.
[22] Wang D, Chen J, Wang G, Lu Z, Sun S, Li J, Jiang J, Zhou Di, Song K & Reaney IM, Cold sintered LiMgPO4 based composites for low temperature co-fired ceramic (LTCC) applications, Journal of the American Ceramic Society, 2020, 103 (11), 6237-6244.
[23] CharanjeetSingh, MariaVesnaNikolic, SukhleenBindraNarang, A.S.B.Sombra, DiZhou, SergeiTrukhanov, LarrisaPanina, JasbirSingh, AlexTrukhanov, Complex permittivity andcomplex permeability characteristics ofCo–Ti doped barium strontium hexaferrite/paraffin wax composites forapplication inmicrowave devices, Applied Physics A, 2020, 126:850.

2019(1、9、13)
[1] Di Zhou*, Li-Xia Pang, Da-Wei Wang, Ian M. Reaney*, Novel water-assisting low firing MoO3 microwave dielectric ceramics, Journal of the European Ceramic Society, 39 (2019) 2374–2378.
[2]Huan-Huan Guo,Di Zhou*, Li-Xia Pang and Ze-Ming Qi, Microwave Dielectric Properties of Low Firing Temperature Stable Scheelite Structured (Ca,Bi)(Mo,V)O4Solid Solution Ceramics for LTCC applications,Journal of the European Ceramic Society, 39 (2019) 2365–2373.
[3] Li-Xia Pang, Di Zhou*, Zhen-Xing Yue, Temperature independent low firing [Ca0.25(Nd1-xBix)0.5]MoO4 (0.2 ≤ x ≤ 0.8) microwave dielectric ceramics, Journal of Alloys and Compounds, 2019, 781, 385-388.
[4] Li-Xia Pang,Di Zhou*, Modification of NdNbO4microwave dielectric ceramic by Bi substitutions,Journal of the American Ceramic Society, 2019;102:2278–2282.
[5] Shu-Zhao Hao,Di Zhou*and Li-Xia Pang, The Spectra analysis and Microwave Dielectric Properties of [Ca0.55(Sm1-xBix)0.3]MoO4Ceramics,Journal of the American Ceramic Society,2019, 102 (6), 3103-3109.
[6] Jing Li,Di Zhou*, Influence of Ag doping on the dielectric and magnetic properties of LiFe5O8ceramics,Journal of Alloys and Compounds, 2019,785, 13-18.
[7] J Li, Di Zhou*, WF Liu, JZ Su, MS Fu, Novel and facile reduced graphene oxide anchored Ni-Co-Zn-Nd-ferrites composites for microwave absorption, Scripta Materialia 2019, 171, 42-46.
[8] Li, Wenbo; Di Zhou*; Xu, Ran; Wang, Da-Wei; Su, Jinzhan; Pang, Li-Xia; Liu, Wenfeng; Chen, Guo-Hua, “BaTiO3-Based Multilayers with Outstanding Energy Storage Performance for High Temperature Capacitor Applications", ACS Applied Energy Materials, 2019,2 (8), 5499-5506.
[9] Zhili Ma, Jinxiong Zhao, and Di Zhou*, Microwave dielectric properties of the (1?x)La(Nb0.9V0.1)O4-xCaMoO4 (0.05≤x≤0.50) scheelite solid solution ceramics, Journal of Alloys and Compounds, 789 (2019) 345-350.
[10] Dawei Wang*, Di Zhou, Kaixin Song, Antonio Feteira, Clive A. Randall, and Ian M. Reaney, Cold Sintered C0G Multilayer Ceramic Capacitors, Advanced Electronic Materials, 2019, **.
[11] Feng Shi, He-Lei Dong,Di Zhou, Chun-Hai Wang, Qiu-Lin Tan, Ji-Jun Xiong, Qing Wang, Lattice dynamics and phonon characteristics of complex perovskite microwave ceramics,IET Nanodielectrics,2019, Vol. 2 Iss. 1, pp. 11-26.
[12] Dawei Wang*, Shiyu Zhang, Di Zhou, Kaixin Song, Antonio Feteira, Yiannis Vardaxoglou, Will Whittow, Darren Cadman, Ian M Reaney,* Temperature stable cold sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 microwave dielectric composites, Materials, 2019, 12 (9), 1370.
[13] Ge Wang, Jinglei Li, Xun Zhang, Zhongming Fan, Fan Yang, Antonio Feteira,Di Zhou,Derek C. Sinclair, Tao Ma, Xiaoli Tan, Dawei Wang* and Ian M. Reaney, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity, 2019,Energy Environ. Sci.2019, 12, 582-588.
2018(3、7、11)
[1]Di Zhou*, LX Pang,DW Wang, Ian M. Reaney*, BiVO4based high k microwave dielectric materials: a review,(Review Article) J. Mater. Chem. C, 2018, 6, 9290-9313.
[2]Di Zhou*, LX Pang,DW Wang, ZM Qi, Ian M. Reaney*, High Quality Factor, Ultralow Sintering Temperature Li6B4O9 Microwave Dielectric Ceramics with Ultralow Density for Antenna Substrates,ACS Sustainable Chem. Eng., 2018, 6 (8), pp 11138–11143.
[3]Di Zhou*, LX Pang, DW Wang, HH Guo, F Yang, ZM Qi, C Li, BB Jin,Ian M. Reaney*,Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4ceramic,Journal of the European Ceramic Society, 2018, 38[4], 1556-1561.
[4]Wen-Bo Li,Di Zhou*, Ran Xu, Li-Xia Pang, Ian M Reaney, BaTiO3-Bi(Li0.5Ta0.5)O3, Lead-Free Ceramics and Multilayers with High Energy Storage Density and Efficiency,ACS Applied Energy Materials, 2018, 1 (9), 5016-5023.
[5]LX Pang,Di Zhou*, WG Liu, ZM Qi, ZX Yue, Crystal structure and microwave dielectric behaviors of scheelite structured (1-x) BiVO4-xLa2/3MoO4(0.0≤ x≤ 1.0) ceramics with ultra-low sintering temperature,Journal of the European Ceramic Society, 2018, 38[4], 1535-1540.
[6]Li-Xia Pang,Di Zhou*, Da-Wei Wang, Jin-Xiong Zhao, Wei-Guo Liu, Zhen-Xing Yue, Ian M Reaney, Temperature stable K0.5(Nd1-xBix)0.5MoO4microwave dielectrics ceramics with ultra-low sintering temperature,Journal of the American Ceramic Society, 2018, 101[5], 1806–1810.
[7]Huan-Huan Guo,Di Zhou*, Li-Xia Pang, Jin-Zhan Su, Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss,Journal of Materiomics, 2018, 4(4), 368-382.
[8]Dawei Wang,Di Zhou, Shiyu Zhang, Yiannis Vardaxoglou, William G Whittow, Darren Cadman, Ian M Reaney, Cold-Sintered Temperature Stable Na0.5Bi0.5MoO4-Li2MoO4Microwave Composite Ceramics,ACS Sustainable Chem. Eng., 2018,6 (2), 2438–2444.
[9]Dawei Wang, Zhongming Fan,Di Zhou, Amir Khesro, Shunsuke Murakami, Antonio Feteira, Quanliang Zhao, Xiaoli Tan, Ian M Reaney, Bismuth ferrite-based lead free ceramics and multilayers with high recoverable energy density,J. Mater. Chem. A,2018, 6, 4133-4144.
[10]Dawei Wang, Zhongming Fan, Wenbo Li, Di Zhou, Antonio Feteira, Ge Wang, Shunsuke Murakami, Shikuan Sun, Quanliang Zhao, Xiaoli Tan, Ian M Reaney, High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-Doped BiFeO3-BaTiO3 ceramics,ACS Appl. Energy Mater., 2018, 1 (8) 4403-4412.
[11] Dawei Wang, Ge Wang, Shunsuke Murakami, Zhongming Fan, Antonio Feteira, Di Zhou, Shikuan Sun, Quanliang Zhao, Ian M Reaney,BiFeO3-BaTiO3: a new generation of lead-free electroceramics,Journal of Advanced Dielectrics, 2018.
2017(2、12)
[1]Di Zhou*, Jing Li, Li-Xia Pang, Da-Wei Wang, Ian M Reaney, Novel water insoluble and sustainable (NaxAg2-x)MoO4(0 ≤ x ≤ 2) microwave dielectric ceramics with spinel structure sintered at 410 degrees,Journal of Materials Chemistry C, 2017, 5, 6086 - 6091.
[2]Di Zhou*, Li-Xia Pang, Da-Wei Wang, Chun Li, Biao-Bing Jin & Ian M. Reaney*, High permittivity, low loss microwave dielectrics suitable for 5G resonator and low temperature co-fired ceramic architecture,Journal of Materials Chemistry C, 2017, 5 (38), 10094-10098.
[3] Li-Xia Pang, Di Zhou*, Ze-Ming Qi, Wei-Guo Liu, Zhen-Xing Yue and Ian M. Reaney, Structure–property relationships of low sintering temperature scheelite-structured (1-x)BiVO4–xLaNbO4 microwave dielectric ceramics, Journal of Materials Chemistry C, 2017, 5, 2695-2701.
[4] Wen-Bo Li, Di Zhou*, Li-Xia Pang, Ran Xu and Huan-Huan Guo, Novel Barium titanate based capacitors with high energy density and fast discharge performance, Journal of Materials Chemistry A, 2017, 5 (37), 19607-19612.
[5] Li-Xia Pang, Di Zhou*, Wen-Bo Li and Zhen-Xing Yue, High quality microwave dielectric ceramic sintered at extreme-low temperature below 200 degrees and co-firing with base metal, Journal of the European Ceramic Society, 2017, 37[9], 3073–3077.
[6] Dan Guo,Di Zhou*, Wen-Bo Li, Li-Xia Pang, Yan-Zhu Dai, Ze-Ming Qi, Phase Evolution, Crystal Structure and Microwave Dielectric Properties of Water Insoluble (1-x)LaNbO4-xLaVO4(0 < x < 0.9) Ceramics,Inorganic Chemistry, 2017,56 (15), 9321-9329.
[7] Li-Xia Pang, Di Zhou*, Ze-Ming Qi, Zhen-Xing Yue, Influence of W substitution on crystal structure, phase evolution and microwave dielectric properties of (Na0.5Bi0.5)MoO4 ceramics with low sintering temperature, Scientific Reports, 2017, 7, 3201.
[8] Wen-Bo Li, Di Zhou*, Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3 based ceramics, Applied Physics Letters, 2017, 110, 132902. (Highly Cited Editor's Picks)
[9] Wen-Bo Li, Di Zhou*, Dan Guo, Li-Xia Pang, Guo-Hua Chen, Ze-Ming Qi, Qiu-Ping Wang, and Han-Chen Liu, Structure, Raman spectra, far-infrared spectra and microwave dielectric properties of temperature independent CeVO4-TiO2 composite ceramics, Journal of Alloys and Compounds, 2017, 694, 40-45.
[10] Wen-Bo Li, Di Zhou*, Li-Xia Pang, Structure and energy storage properties of Mn-doped (Ba,Sr)TiO3–MgO composite ceramics, J Mater Sci: Mater Electron, 2017, 28, 8749–8754.
[11] Wen-Bo Li, Di Zhou*, Shu-Zhao Hao, Guo-Hua Chen, Ze-Ming Qi, Qiu-Ping Wang, Han-Chen Liu, and Xi Yao, Ultra-low loss microwave dielectric ceramics in (Mg1/3Nb2/3)O2-ZrO2-TiO2 ternary system, Journal of the American Ceramic Society, 2017;100:3982–3989.
[12] Shu-Zhao Hao, Di Zhou*, Wen-Bo Li, Microwave Dielectric Properties of BiCu2PO6 Ceramics with Low Sintering Temperature, Journal of Electronic Materials, 2017, 46 (11), 6241-6245.
[13] VV Atuchin, AS Aleksandrovsky, MS Molokeev, AS Krylov, AS Oreshonkov, Di Zhou, Structural and spectroscopic properties of self-activated monoclinic molybdate BaSm2(MoO4)4, Journal of Alloys and Compounds, 2017, 729, 843-849.
[14] Tan, Xianghu; Zhou, Huanfu*; Tang, Yuxin; Zhou Di; Kanhere, Pushkar; Tay, Qiuling; Chen, Xiuli, Li4x/3Co2-2xTi1+2x/3O4 spinel solid solutions: order and disorder phase transition, cations distribution and adjustable microwave dielectric properties, RSC Advances, 2017, 7 [81], 51670-51677.
2016(3、9)
[1]Di Zhou*, Dan Guo, Wen-Bo Li, Li-Xia Pang, Xi Yao, Da-Wei Wang, Ian M Reaney, Novel temperature stable high-εrmicrowave dielectrics in the Bi2O3–TiO2–V2O5system,Journal of Materials Chemistry C, 2016, 4, 5357-5362.
[2] Di Zhou*, Xiao-Qin Fan, Xiao-Wei Jin, Duan-Wei He, and Guo-Hua Chen, Structures, Phase Transformations, and Dielectric Properties of BiTaO4 Ceramics, Inorganic Chemistry, 2016, 55, 11979?11986.
[3] Di Zhou*, Jing Li, Li-Xia Pang, Guo-Hua Chen, Ze-Ming Qi, Da-Wei Wang, and Ian M. Reaney, Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO4 Solid-Solution Ceramics, ACS Omega, 2016, 1, 963?970.
[4] Wen-Bo Li,Di Zhou*, Hai-Hong Xi, Li-Xia Pang, Xi Yao, Structure, Infrared Reflectivity and Microwave Dielectric Properties of (Na0.5La0.5)MoO4–(Na0.5Bi0.5)MoO4Ceramics,Journal of the American Ceramic Society, 2016, 99[6] 2083–2088.
[5] Yi-Ding Zhang,Di Zhou*,Pseudo Phase Diagram and Microwave Dielectric Properties of Li2O-MgO-TiO2 Ternary System,Journal of the American Ceramic Society,2016, 99 [11] 3645–3650.
[6] Wen-Bo Li,Di Zhou*, Bin He, Fei Li, Li-Xia Pang, Sheng-Guo Lu, Structure and dielectric properties of Nd(Zn1/2Ti1/2)O3–BaTiO3ceramics for energy storage applications,Journal of Alloys and Compounds, 2016, 685, 418–422.
[7] Li-Xia Pang,Di Zhou*, Wei-Guo Liu, Zhen-Xing Yue, Phase evolution and dielectric properties of fluorite-type Bi3(Nb0.9M0.1)O7+δceramics (M= Ti, Zr, Sn, W, δ=±0.05),Journal of Alloys and Compounds, 2016, 674, 89-92.
[8] Li-Xia Pang, Wei-Guo Liu, Di Zhou*, Zhen-Xing Yue, Phase evolution and microwave dielectric properties of (Bi1-xLnx)2MoO6 (Ln= Nd and La, x≤ 0.3) ceramics, Ceramics International, 2016, 42[15], 17243-17247.
[9] Li-Xia Pang, Wei-Guo Liu,Di Zhou*, Zhen-Xing Yue, Novel glass-free low-temperature fired microwave dielectric ceramics: Bi(Ga1/3Mo2/3)O4,Ceramics International, 2016, 42[3], 4574-4577.
[10] Jinxiong Zhao, Yuyu Tian, Zhen Wang, Shan Cong,Di Zhou,Qingzhu Zhang, Mei Yang, Weikun Zhang, Fengxia Geng, and Zhigang Zhao*, Trace H2O2-Assisted High-Capacity Tungsten Oxide Electrochromic Batteries with Ultrafast Charging in Seconds,Angew. Chem. Int. Ed.2016, 55, 7161 –7165.
[11] Tao, Fengqiong; Genevois, Cecile; Lu, Fengqi; Kuang, Xiaojun*; Porcher, Florence; Li, Liangju; Yang, Tao; Li, Wenbo;ZhouDi; Allix, Mathieu, The First 14-Layer Twinned Hexagonal Perovskite Ba14Mn1.75Ta10.5O42: Atomic-Scale Imaging of Cation Ordering,Chem. Mater.,2016, 28, 4686?4696.
2015(2、12)
[1] Zhou D*, Li WB, Xi HH, Pang LX, and Pang GS, Phase composition, crystal structure, infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO4-YVO4 system, Journal of Materials Chemistry C, 2015, 3, 2582–2588.
[2] Zhou D*, Li WB, Pang LX, Yue ZX, Pang GS, and Yao X. Abnormal dielectric properties and phase transition in Bi0.783(Mo0.65V0.35)O4 scheelite-related structured ceramic, RSC Advances, 2015, 5, 19255–19258.
[3]Xi HH,Zhou D*, Xie HH, and Li WB, Microwave dielectric properties of low firing scheelite-related (Na0.5La0.5)MoO4ceramic,Materials Letters, 2015, 142, 221-224.
[4]Xi HH,Zhou D*, Xie HH, He B and Wang QP, Raman Spectra, Infrared Spectra, and Microwave Dielectric Properties of Low-Temperature Firing [(Li0.5Ln0.5)1?xCax]MoO4(Ln = Sm and Nd) Solid Solution Ceramics with Scheelite Structure,Journal of the American Ceramic Society, 2015, 98 [2] 587-593.
[5]Pang LX,Zhou D*, Guo J, Yue ZX, and Yao X,Microwave Dielectric Properties of (Li0.5Ln0.5)MoO4(Ln = Nd, Er, Gd, Y, Yb, Sm, and Ce) Ceramics,J. Am. Ceram. Soc., 2015, 98, 130-135.
[6]Pang LX,Liu WG, andZhou D*, Temperature stable high K microwave dielectric ceramics of Bi3NbO7doped by V2O5,Ceramics International, 2015, 41, 5182–5185.
[7]Xi HH,Zhou D*, Xie HH, and Li WB, Microwave dielectric properties of low firing (Na0.5Ln0.5)MoO4(Ln=Nd and Ce) ceramics,Ceramics International, 2015, 41, 6103– 6107.
[8]Li WB, Xi HH, andZhou D*, Microwave dielectric properties of BaY2(MoO4)4ceramic with low sintering temperature,Journal of Materials Science: Materials in Electronics, 2015, 26, 1608–1611.
[9]Li, Wen-Bo; Xi, Hai-Hong; Zhou D*, Microwave dielectric properties of LiMVO4 (M = Mg, Zn) ceramics with low sintering temperatures, Ceramics International, 2015, 41, 9063-9068.
[10]Li, Wen-Bo; Xi, Hai-Hong; Zhou D*, Microwave Dielectric Properties of Temperature-Stable BaLn2(MoO4)4-TiO2 (Ln = Ce, Nd, and Sm) Ceramics, Journal of Electronic Materials, 2015, 44[11], 4250-4254.
[11]Zhang, Yi-Ding; Han, Jun; Liang, Rui; Zhou D*, Novel temperature stable Li2TiO3-based microwave dielectric ceramics with low loss,Materials Letters, 2015, 153, 118-120.
[12] Zhai Xiao-Liu, Zheng Xu, Xi Hai-Hong, Li Wen-Bo, Han Jun, and Zhou D*, Microwave Dielectric Properties of LiKSm2(MoO4)4 Ceramics with Ultralow Sintering Temperatures,J. Am. Ceram. Soc.,2015, 98 [9] 2716-2719.
[13]Zhou JH, Xu NX, Zhang QL*,Zhou D, Tang X and Yang H, Low-temperature densification of Mg2SnO4ceramics with LiF-Fe2O3-V2O5additive,Materials Letters, 2015, 139, 169-172.
[14] He Li, Mi Shao-Bo, Jin Xiaowei, Zhang Hui, Zhou Di, Xiang Feng, Yang Haibo, Wang Hong*, Order-Disorder Phase Transition and Magneto-Dielectric Properties of (1-x)LiFe5O8-xLi2ZnTi3O8 Spinel-Structured Solid Solution Ceramics, J. Am. Ceram. Soc., 2015, 98 [7], 2122-2129.
[15] Xie HD*, Xi HH, Chen C, Zhou D, Microwave dielectric properties of two low temperature sintering ceramics in the PbO-WO3 binary system, Ceramics International, 2015, 41 [8], 10287-10292.
[16] Guo Jing, Randall Clive, Zhou Di, Zhang Gaoqun, Zhang Caihong, Jin Biaobing, Wang Hong*, Correlation between vibrational modes and dielectric properties in (Ca1?3xBi2xΦx)MoO4 ceramics, J. Eur. Ceram. Soc., 2015, 35 [16], 4459-4464.
2014(9、13)
[1] Zhou D*, Pang LX, Xie HD, Guo J, He B, Qi ZM, Shao T, Yao X and Randall CA, Crystal structure and microwave dielectric properties of a novel ultra-low temperature fired (AgBi)0.5WO4 ceramic, European Journal of Inorganic Chemistry, 2014, 2, 296–301.
[2] Zhou D*, Pang LX, Guo J, Qi ZM, Shao T, Wang QP, Xie HD, Yao X and Randall CA, Influence of Ce Substitution for Bi in BiVO4 and the Impact on the Phase Evolution and Microwave Dielectric Properties, Inorganic Chemistry, 2014, 53[2], 1048-1055.
[3] Zhou D*, Li WB, Pang LX, Guo J, Qi ZM, Shao T, Yao X, and Randall CA, Phase evolution and microwave dielectric properties of xBi2/3MoO4-(1-x)BiVO4 (0.0≤x≤1.0) low temperature firing ceramics, Dalton Transactions, 2014, 43, 7290-7297.
[4] Zhou D*, Xu C, He DW, Fu MS, Guo J, Zhou HF, Pang LX, Yao X. Dielectric Properties and Phase Transitions of BiNbO4 Ceramic, Scripta Materialia, 2014, 81, 40-43.
[5] Zhou D*, Li, WB, Guo J, Pang LX, Qi ZM, Shao T, Xie HD, Yue ZX, and Yao X, Structure, Phase Evolution, and Microwave Dielectric Properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 Ceramic with Ultra low Sintering Temperature, Inorganic Chemistry, 2014, 53, 5712-5716.
[6] Zhou D*, He B, Guo J, Pang LX, Qi ZM, Shao T, Wang QP, Yue ZX, and Yao X, Phase Evolution and Microwave Dielectric Properties of (Bi1–xFex)VO4 (x ≤ 0.40) Ceramics, J. Am. Ceram. Soc., 2014, 97, 2915-2920.
[7] Zhou D*, Li, WB, Pang LX, Guo J, Qi ZM, Shao T, Yue ZX, and Yao X, Sintering Behavior and Dielectric Properties of Ultra-Low Temperature Fired Silver Molybdate Ceramics, J. Am. Ceram. Soc., 2014, 97, 3597-3601.
[8] Zhou D*, Pang LX, Qi ZM, Jin BB, Yao X, Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal, Scientific Reports, 2014, 4, 5980.
[9] Zhou D*, Pang LX, Qi ZM, Yao X, Crystal Structure and Microwave Dielectric Behaviors of Ultra-Low Temperature Fired x(Ag0.5Bi0.5)MoO4?(1?x)BiVO4 (0.0 ≤ x ≤ 1.0) Solid Solution with Scheelite Structure, Inorganic Chemistry, 2014, 53, 9222-9227.
[10] Guo J, Zhou D*, Zou SL, Wang H, Pang LX, and Yao X, Microwave Dielectric Ceramics Li2MO4-TiO2 (M=Mo, W) with Low Sintering Temperatures, J. Am. Ceram. Soc., 2014, 97[6], 1819–1822.
[11] Xi HH, Zhou D*, He B, Xie XD, Microwave Dielectric Properties of PbMoO4 Ceramic with Ultra-Low Sintering Temperature, J. Am. Ceram. Soc., 2014, 97 [5], 1375–1378.
[12] Pang LX, Zhou D*, and Liu WG, Low-Temperature Sintering and Microwave Dielectric Properties of CaMoO4-Based Temperature Stable LTCC Material, J. Am. Ceram. Soc., 2014, 97 [7], 2032–2034.
[13] Zhang YD, Zhou D*, Guo J, Xi HH, He B, Microwave dielectric properties of the (1-x)(Mg0.95Zn0.05)TiO3-x(Ca0.8Sm0.43)TiO3 temperature stable ceramics, Materials Letters 132 (2014) 200–202.
[14] Guo J, Zhou D, Li Y, Shao T, Qi ZM, Jin BB, and Wang H*, Structure–property relationships of novel microwave dielectric ceramics with low sintering temperatures: (Na0.5xBi0.5xCa1?x)MoO4, Dalton Trans., 2014, 43, 11888-11896.
[15] He L, Zhou D, Yang HB, Niu YJ, Xiang F, and Wang H*, Low-Temperature Sintering Li2MoO4-Ni0.5Zn0.5Fe2O4 Magneto-Dielectric Composites for High-Frequency Application, J. Am. Ceram. Soc., 2014, 97[8], 2552–2556.
[16] Guo J, Randall CA, Zhang GQ, Zhou D, Chen YY, Wang H*, Synthesis, Structure, and Characterization of New Low-Firing Microwave Dielectric Ceramics: (Ca1-3xBi2xΦx)MoO4, Journal of Materials Chemistry C, 2014, 2, 7364-7372.
[17] Zhang GQ, Guo J, He L, Zhou D, Wang H*, Koruza J, Kosec M, Preparation and Microwave Dielectric Properties of Ultra-low Temperature Sintering Ceramics in K2O–MoO3 Binary System, J. Am. Ceram. Soc., 97 [1] 241–245 (2014).
[18] Xie HD*, Xi HH, Li F, Chen C, Wang XC, Zhou D, Microwave dielectric properties of Pb2MoO5 ceramic with ultra-low sintering temperature, Journal of the European Ceramic Society, 2014, 34 [15], 4089-4093.
2013(1、5)
[1]Zhou D*, Pang LX, Qu WG, et al., Dielectric behavior, band gap, in situ X-ray diffraction, Raman and infrared study on (1-x)BiVO4-x(Li0.5Bi0.5)MoO4solid solution,RSC Advances, 2013, 3, 5009-5014.
[2] He L,Zhou D, Xiang F, Chang PP, Li Y, Wang H,A Novel Magnetodielectric Solid Solution Ceramic 0.4LiFe5O8–0.6Li2MgTi3O8with Excellent Microwave Dielectric Properties,Journal of the American Ceramic Society, 2013, 96 [10] 3027–3030.
[3]Pang LX,Zhou D*, Wang H, Effect of Ca substitution on phase compositions and dielectric properties of Bi2O3-ZnO-Nb2O5pyrochlore ceramics,Ceramic International, 2013, 39, s673-s676.
[4] Pang LX,Zhou D*, Guo J, Qi ZM, Shao T,Microwave dielectric properties of scheelite structured low temperature fired Bi(In1/3Mo2/3)O4 ceramic,Ceramic International, 2013, 39,4719-4722.
[5] Guo J,Zhou D, Wang L, Wang H, Shao T, Qi ZM and Yao X, Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO4-TiO2(A=Ca, Sr),Dalton Transactions, 2013, 42, 1483.
[6] Pang LX,Zhou D, Chang-Long Cai, Wei-Guo Liu, Infrared spectroscopy and microwave dielectric properties of ultra-low temperature firing (K0.5La0.5)MoO4ceramics,Materials Letters, 2013, 92, 36-38.
[7] He L, Yang HB,Zhou D, Niu YJ, Xiang F, Wang H,Improved dielectric and magnetic properties of 1-3-type Ni0.5Zn0.5Fe2O4/epoxy composites for high frequency applications,Journal of Physics D-Applied Physics, 2013, 46(12), 125003.
[8] Wu Y,Zhou D*, Guo J, Pang LX,Microwave dielectric properties and low temperature firing of (1-x)Li2Zn3Ti4O12-xLi2TiO3ceramics with B2O3-CuO addition,Journal of Materials Science: Materials in Electronics, 2013, 24(5), 1505-1510.
[9] Wu Y,Zhou D*, Guo J, Pang LX, Microwave dielectric properties and low temperature sintering of Li2Zn(Ti1-xSnx)3O8 (x≤0.20) ceramics with B2O3-CuO addition,Journal of Materials Science: Materials in Electronics,2013, 24(12), 4942-4946.
2012(2、2)
[1]Zhou D*, Pang LX, Guo J, Qi ZM, Shao T, Yao X, Randall CA, , Phase evolution, phase transition, and microwave Dielectric properties of scheelite structured xBi(Fe1/3Mo2/3)O4-(1-x)BiVO4(0.0≤x≤1.0) low temperature firing ceramics,Journal of Materials Chemistry, 2012,22, 21412
[2]Zhou D*, Pang LX, Guo J, et al, Phase evolution and microwave dielectric properties of (Li0.5Bi0.5)(W1-xMox)O4(0.0≤x≤1.0) ceramics with ultra-low sintering temperatures,Functional Materials Letters, 2012, 5(4) **.
[3] Wu XG, Wang H, Chen YH, Zhou D, Synthesis and Microwave Dielectric Properties of Zn3B2O6 Ceramics for Substrate Application, Journal of the American Ceramic Society, 2012, 95(6): 1793-1795.
[4] Dai W, Wang H, Chen SB, Li DC, Zhou D, Effect of point defects on band-gap properties in diamond structure photonic crystals, Journal of Applied Physics, 2012, 111(2).
[5] Pang LX, Liu H, Zhou D, JX Yang, DJ Li, WG Liu,Low-temperature sintering and microwave dielectric properties of Li3MO4 (M = Ta, Sb) ceramics, Journal of Alloys and Compounds, 2012, 525, 22-24.
[6] Guo J,Zhou D, Wang H, Chen YH, Zeng Y, Xiang F, Wu Y, Yao X, Microwave and Infrared Dielectric Response of Temperature Stable (1-x)BaMoO4-xTiO2Composite Ceramics,Journal of the American Ceramic Society, 2012, 95(1): 232-237.
[7] Pang LX, Liu H,Zhou D, Sun GB, Qin WG, Liu WG, Microwave dielectric ceramic with intrinsic low firing temperature: BaLa2(MoO4)4,Materials Letters, 2012, 72: 128-130.
[8] He L, Zhou D, Yang HB, Guo J, and Wang H, A novel magneto-dielectric solid solution ceramic 0.25LiFe5O8–0.75Li2ZnTi3O8 with relatively high permeability and ultra-low dielectric loss, Journal of the American Ceramic Society, 2012, 95 [12] 3732–3734.
2011(8、9)
[1] Zhou D*, Randall CA, Pang LX, Wang H, Guo J, Zhang GQ, Wu Y, Guo KT, Shui L, Yao X, Microwave dielectric properties of (ABi)1/2MoO4 (A = Li, Na, K, Rb, Ag) type ceramics with ultra-low firing temperatures, Materials Chemistry and Physics, 2011, 129(3): 688-692.
[2] Zhou D*, Randall CA, Pang LX, Wang H, Wu XG, Guo J, Zhang GQ, Shui L, Yao X, Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) Lyonsite-Related-Type Ceramics with Ultra-Low Sintering Temperatures, Journal of the American Ceramic Society, 2011, 94(3): 802-805.
[3] Zhou D*, Randall CA, Pang LX, Wang H, Guo J, Zhang GQ, Wu XG, Shui L, Yao X, Microwave Dielectric Properties of Li2WO4 Ceramic with Ultra-Low Sintering Temperature, Journal of the American Ceramic Society, 2011, 94(2): 348-350.
[4] Zhou D*, Qu WG, Randall CA, Pang LX, Wang H, Wu XG, Guo J, Zhang GQ, Shui L, Wang QP, Liu HC, Yao X. Ferroelastic phase transition compositional dependence for solid-solution [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 scheelite-structured microwave dielectric ceramics, Acta Materialia, 2011, 59(4): 1502-1509.
[5] Zhou D*, Pang LX, Wang H, Guo J, Yao X, Randall CA, Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1-0.5x)(MoxV1-x)O4 solid solution ceramics with scheelite structure, Journal of Materials Chemistry, 2011, 21: 18412-18420.
[6] Zhou D*, Pang LX, Guo J, Wang H, Yao X, Randall CA, Phase Evolution, Phase Transition, Raman Spectra, Infrared Spectra and Microwave Dielectric Properties of Low Temperature Firing (K0.5xBi1-0.5x)(MoxV1-x)O4 Ceramics with Scheelite Related Structure, Inorganic Chemistry, 2011, 50: 12733-12738.
[7] Zhou D*, Pang LX, Guo J, Wu Y, Zhang GQ, Dai W, Wang H, Yao X, New Microwave Dielectric Ceramics BaLn2(MoO4)4 (Ln = Nd and Sm) with Low Loss, Journal of the American Ceramic Society, 2011, 94(9): 2800-2803.
[8] Zhou D*, Pang LX, Guo J, Zhang GQ, Wu Y, Wang H, Yao X, Low temperature firing microwave dielectric ceramics (K0.5Ln0.5)MoO4 (Ln =Nd and Sm) with low dielectric loss, Journal of the European Ceramic Society, 2011, 31(15): 2749-2752.
[9] Zhou D*, Pang LX, Guo J, Wu Y, Zhang GQ, Wang H, Yao X, sintering behavior and microwave dielectric properties of novel low temperature firing Bi3FeMo2O12 Ceramic, Journal of Advanced Dielectrics, 2011, 1(4): 379-382.
[10] Pang LX, Zhou D, Ca3WO6: a novel microwave dielectric ceramic with complex perovskite structure, Journal of Materials Science-Materials in Electronics, 2011, 22(7): 807-810
[11] Dai W, Wang H, Wang MJ, Shen ZY, Li DC, Zhou D, Diamond electromagnetic band gap structure based on Bi(Nb0.992V0.008)O4 ceramic, Journal of Materials Science-Materials in Electronics, 2011, 22(4): 422-425.
[12] Pang LX, Sun GB, Zhou D, Ln2Mo3O12 (Ln = La, Nd): A novel group of low loss microwave dielectric ceramics with low sintering temperature, Materials Letters, 2011 65(2): 164-166.
[13] Guo J, Zhou D, Wang H, et al. Microwave dielectric properties of (1-x)ZnMoO4-xTiO2 composite ceramics, Journal of Alloys and Compounds, 2011 509(19): 5863-5865.
[14] Pang LX, Zhou D, Wang H, et al. Phase evolution and microwave dielectric properties of Bi3SbO7 ceramic, Journal of Physics and Chemistry of Solids, 2011 72(7): 882-885.
[15] Pang LX, Zhou D, Chen YH, et al.Structural and microwave dielectric behavior of (Li1/4Nb3/4) substituted ZrxSnyTizO4 (x+y+z=2) system, Materials Chemistry and Physics, 2011 125(3): 641-645.
[16] Wu Y, Zhou D, Guo J, et al. Temperature stable microwave dielectric ceramic 0.3Li2TiO3-0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss, Materials Letters, 2011 65(17-18): 2680-2682.
2010(5、5)
[1] Zhou D*, Wang H, Pang LX, Yao X. Low-firing of BiSbO4 microwave dielectric ceramic with V2O5-CuO addition [J]. Materials Chemistry and Physics, 2010, 119: 149-152.
[2] Zhou D*, Randall C, Wang H, Pang LX, Yao X. Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra low sintering temperatures [J]. Journal of the American Ceramic Society, 2010, 93(4): 1096-1100.
[3] Zhou D*, Randall C, Baker A, Wang H, Pang LX, Yao X. Dielectric properties of an ultra-low temperature co-firing Bi2Mo2O9 multilayer [J]. Journal of the American Ceramic Society, 2010, 93(5): 1443-1446.
[4] Zhou D*, Randall CA, Wang H, et al. Ultra-Low Firing High-k Scheelite Structures Based on [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 Microwave Dielectric Ceramics, Journal of the American Ceramic Society, 2010 93(8): 2147-2150.
[5] Zhou D*, Wang H, Wang QP, et al. Microwave dielectric properties and Raman spectroscopy of scheelite solid solution [(Li0.5Bi0.5)1-xCax]MoO4 ceramics with ultra-low sintering temperatures, Functional Materials Letters, 2010 3(4): 253-257.
[6] Pang LX, Zhou D, A low-firing microwave dielectric material in Li2O-ZnO-Nb2O5 system, Materials Letters, 2010 64(22): 2413-2415.
[7] Pang LX, Wang H, Zhou D, et al. A new temperature stable microwave dielectric with low-firing temperature in Bi2MoO6-TiO2 system, Journal of Alloys and Compounds, 2011 493(1-2): 626-629.
[8] Liu WH, Wang H, Zhou D, et al. Dielectric Properties of Low-Firing Bi2Mo2O9 Thick Films Screen Printed on Al Foils and Alumina Substrates. Journal of the American Ceramic Society, 2010 93(8): 2202-2206
[9] Dai W, Wang H, Wang MJ, Shen ZY, Li DC, Zhou D, Shi JZ, Fabrication of three-dimensional electromagnetic band-gap structure with high-K dielectric ceramics by rapid-prototyping, Journal of Electroceramics, 2010 25(2-4): 218-222.
[10] Pang LX, Wang H, Zhou D, et al. Low-temperature sintering and microwave dielectric properties of TiO2-based LTCC materials, Journal of Materials Science-Materials in Electronics, 2010 21(12): 1285-1292.
[11] Pang LX, Zhou D, Microwave Dielectric Properties of Low-Firing Li2MO3 (M = Ti, Zr, Sn) Ceramics with B2O3-CuO Addition, Journal of the American Ceramic Society, 2010 93(11): 3614-3617.
[12] Pang LX, Wang H, Zhou D, et al. Phase evolution, Raman spectroscopy and microwave dielectric behavior of (Li1/4Nb3/4) doped ZrO2-TiO2 system, Applied Physics a-Materials Science & Processing, 2010 100(4): 1205-1209.
[13] Pang LX, Wang H, Zhou D, et al. Sintering behavior and microwave dielectric properties of Ba6-3xNd8+2xTi18O54 (x=2/3) ceramics coated by H3BO3-TEOS sol-gel, Materials Chemistry and Physics, 2010 123(2-3): 727-730.
[14] Dai W, Wang H, Zhou D, et al. The Ultra-Wide Band Gap Property Induced by Lattice Period Gradually Changing in Three-Dimensional Photonic Crystals, Journal of the American Ceramic Society, 2010 93(12): 3980-3982.
2009(6、3)
[1] Zhou D, Wang H*, Yao X, Pang LX, Chen YH. Sintering behavior, phase evolution and microwave dielectric properties of Bi{Sb1-x(Nb0.992V0.008)x}O4 ceramics[J]. Materials Chemistry and Physics, 2009, 113:265-268.
[2] Zhou D, Wang H*, Pang LX, Yao X, Wu XG. Low temperature firing of BiSbO4 microwave dielectric ceramic with B2O3-CuO addition[J]. Journal of the European Ceramic Society, 2009, 29: 1543-1546.
[3] Zhou D*, Pang LX, Yao X, Wang H. Influence of sintering process on the microwave dielectric properties of Bi(V0.008Nb0.992)O4 ceramics[J]. Materials Chemistry and Physics, 2009, 115: 126-131.
[4] Zhou D*, Wang H, Pang LX, Randall C, Yao X. Bi2O3-MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric[J]. Journal of the American Ceramic Society, 2009, 92(10): 2242-2246.
[5] Zhou D*, Randall C, Wang H, Pang LX, Yao X. Microwave dielectric properties trends in a solid solution (Bi1-xLnx)2Mo2O9 (Ln=La,Nd, 0.0≤x≤0.2) system[J]. Journal of the American Ceramic Society, 2009, 92(12): 2931-2936.
[6] Zhou D, Pang LX, Wang H*, Yao X. Phase composition and phase transformation in Bi(Sb,Nb,Ta)O4 system[J]. SolidState Sciences, 2009, 11: 1894-1897.
[7] Pang LX, Wang H, Zhou D, Yao X. Raman spectroscopy and microwave dielectric properties of Zr1-x(Li1/4Nb3/4)xTiO4 ceramics[J]. Japanese Journal of Applied Physics, 2009, 48(5): 051403.
[8] Pang LX, Wang H, Chen YH, Zhou D, Yao X. Microstructures and microwave dielectric properties of low-temperature sintered Ca2Zn4Ti15O36 ceramics[J]. Journal of Materials Science-Materials in Electronics, 2009, 20(6):528-533.
[9] Pang LX, Wang H, Zhou D, Yao X. Sintering behavior, structures and microwave dielectric properties of a rutile solid solution system: (AxNb2x)Ti1-3xO2 (A=Cu, Ni)[J]. Journal of Electroceramics, 2009, 23(1): 13-18.
2008(9、0)
[1] Zhou D, Wang H, Yao X, Liu Y. Microwave dielectric properties of low-firing BiNbO4 ceramics with V2O5 substitution[J]. Journal ofElectroceramics, 2008, 21(1-4): 469-472.
[2] Zhou D, Wang H, Yao X, Pang LX. Microwave dielectric properties of low temperature firing Bi2Mo2O9 ceramic[J]. Journal of the American Ceramic Society, 2008, 91(10): 3419-3422.
[3] Zhou D, Wang H, Yao X, Pang LX, Wu XG. Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver [J]. Journal of the American Ceramic Society, 2008, 91(12): 4115-4117.
[4] Zhou D, Wang H, Yao X, Pang LX. Sintering behavior and microwave dielectric properties of Bi2O3-ZnO-Nb2O5-based ceramics sintered under air and N2 atmosphere [J]. Ceramics International, 2008, 34: 901-904.
[5] Zhou D, Wang H, Yao X. Microwave dielectric properties and co-firing with copper of (Bi1-xCux)(Nb1-xWx)O4 ceramics [J]. Ceramics International, 2008, 34: 929-932.
[6] Zhou D, Wang H, Yao X, Pang LX, Zhou HF. Nanopowder preparation and dielectric properties of a Bi2O3-Nb2O5 binary system prepared by the high-energy ball-milling method[J]. Journal of the American Ceramic Society, 2008, 91(1): 139-143.
[7] Zhou D, Wang H,Yao X, Pang LX. Dielectric behavior and cofiring with silver of monoclinic BiSbO4 Ceramic [J]. Journal of the American Ceramic Society, 2008, 91(4): 1380-1383.
[8] Zhou D, Wang H, Yao X, Pang LX. Sintering behavior and microwave dielectric properties of Bi3(Nb1-xTax)O7 solid solutions [J]. Materials Chemistry and Physics, 2008, 110: 212-215.
[9] Zhou D, Wang H, Yao X, Pang LX. Sintering behavior, phase evolution, and microwave dielectric properties of Bi(Sb1-xTax)O4 ceramics [J]. Journal of the American Ceramic Society, 2008, 91(7): 2228-2231.
[10] Zhang L, Wang H, Yao X, Zhou D. The effect of sintering atmosphere on V2O5 substituted BiNbO4 microwave ceramics [J]. Journal of Electroceramics, 2008, 21(1-4): 465-468.
[11] Pang LX, Wang H, Zhou D, Zhou HF, Yao X. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.8Ti0.2O3-δ ceramicswith ZnB2O4 glass addition [J]. International Journal of Applied Ceramic Technology, 2008, 5(4): 341-346.
[12] Pang LX, Wang H, Zhou D, Yao X. Sintering behavior, structures, and microwave dielectric properties of (LixNb3x)Ti1-4xO2 [J]. Journal of the American Ceramic Society, 2008, 91(9): 2947-2951.
[13] Zhou HF, Wang H, Zhou D, Pang LX, Yao X. Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics [J]. Materials Chemistry and Physics, 2008, 109(2-3): 510-514.
2007(7、0)
[1] Zhou D, Wang H, Yao X. Sintering behavior and dielectric Properties of Bi3NbO7 ceramics prepared by mixed oxides and high-energy ball-milling methods [J]. Journal of the American Ceramic Society, 2007, 90(1): 327-329.
[2] Zhou D, Wu W, Wang H, Jiang YS, Yao X. The two element antennas using BiNbO4 ceramics as the substrate [J]. Materials Science and Engineering A, 2007, 460-461: 652-655.
[3] Zhou D, Wang H, Yao X, Wei XY, Xiang F, Pang LX. Phase transformation in BiNbO4 ceramics [J]. Applied Physics Letters, 2007, 90:172910.
[4] Zhou D, Wang H, Yao X. Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO substitution [J]. Materials Chemistry and Physics, 2007, 104:397-402.
[5] Zhou D, Wang H, Zhou HF, Xie XJ, Yao X, Cheng YH. Preparation of Sb3Nb3O13 powders using molten salt method [J]. Journal of Materials Science, 2007, 42:8387-8390.
[6] Zhou D, Wang H, Yao X, Pang LX. Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO-WO3 substitution [J]. Materials Science and Engineering B, 2007, 142: 106-111.
[7] Zhou D, Wang H, Yao X. Layered complex structures of Bi2(Zn2/3Nb4/3)O7 and BiNbO4 dielectric ceramics [J]. Materials Chemistry and Physics, 2007, 105: 151- 153.
2006 (0、0)
[1] Kamba S, Wang H, Berta M, Kadlec F, Petzelt J, Zhou D, Yao X. Correlation between infrared, THz and microwave dielectric properties of vanadium doped antiferroelectric BiNbO4 [J]. Journal of the European Ceramic Society, 2006, 26: 2861-2865.







招生招聘信息 - 周 迪硕士招生
常年招收来自电子科学与技术材料科学与工程物理化学电气等相关专业的保送生及报考生!
欢迎有意考生直接跟周老师联系(zhoudi1220@xjtu.edu.cn),每年都有会夏令营、预录取等相关活动,助力各位学子顺利读研!




博士招生
常年招收交大本校及兄弟院校优秀工科(方向不限)硕士生报考(1-3位/年),具体信息请查阅研究生院网站:http://yz.xjtu.edu.cn/。




博士后招聘
作者还未对该模块添加任何内容.










相关话题/西安交通大学 电子