删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西安交通大学理学院导师教师师资介绍简介-王 喆

本站小编 Free考研考试/2021-06-26

Home - 王 喆Welcome
Welcome to the research group of Quantum Materials and Devices in School of Physicsat Xi'an Jiaotong University. We are interested in understanding electronic and quantum properties of low-dimensinoal systems by nano-device fabrication and electronic transport measurements. Please visit "Research" for more information.




News
Recruting 招聘
2020-04-12


更多新闻>>




Figures






站点计数器






Home - 王 喆Welcome
Welcome to the research group of Quantum Materials and Devices in School of Physicsat Xi'an Jiaotong University. We are interested in understanding electronic and quantum properties of low-dimensinoal systems by nano-device fabrication and electronic transport measurements. Please visit "Research" for more information.




News
Recruting 招聘
2020-04-12


更多新闻>>




Figures






站点计数器






Research - 王 喆Research (研究简介)
We are group of condensed matter experimentalists with interest in electronic properties of low-dimensional systems. Through state-or-art nano-fabrication and ultra-low noise low temperature electronic transport measurements, we aim to discover new phenomena and understand the underlying physics. We hope our work eventually will be relevant for applications, such as in sensing and in the storage of information. In the following, we show several examples of our research projects:

Magnetism in two dimensions (二维磁性)
Long-range magnetic order in two dimensions has been at the heart of fundamental research in condensed matter physics, and is also crucial for future ultra-high density spintronic devices. However, experimental realization of two dimensional (2D) magnetism was extremely difficult until the successful isolation of first 2D magnet from van der Waals materials CrI3 in 2017. In our group, we mainly use electrical measurement methods to probe the magnetic properties of 2D magnets, reveal new phenomena and understand the underlying physics. For example, through tunneling magnetoresistance measurement, we determined the phase diagram of layered antiferromagnet CrCl3 and found interesting even-odd effect, we have demonstrated the persistence of magnetism in atomically thin MnPS3 crystals. In collaboration with other groups, we also investigate 2D magnetism with optical measurement methods, such as scanning single-spin magnetometry and magnetic circular dichroism.

Reference:
Z. Wang, et al. “Determining the phase diagram of atomically thin layered antiferromagnet CrCl3Nature Nanotechnology 14, 1116-1122, (2019)
L. Thiel, et al. “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy” Science 364, 973-976, (2019)
G. Long, et al. “Persistence of Magnetism in Atomically Thin MnPS3 Crystals” Nano Letters 20, 2452-2459 (2020)
N. Ubrig, et al. “Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals” 2D Materials, 7, 015007 (2020)

2D spintronic devices (二维自旋电子器件)
Spintronic devices utilize spin instated of charge to store and process information, so that they can in principle offer low-power consumption and ultrafast speed. 2D materials are ideal candidates for fabricating ultra-high density spintronic devices, because 2D materials can be high quality even at atomically thin level and the interfaces of heterostructures can be atomically sharp. In our group, we are designing and fabricating different types of spintronic devices based on 2D materials, including classic magnetic tunneling junctions (MTJs) with ultra-thin barrier and new type of giant magnetoresistance devices constituted by multi-spin-filters.
Reference:
Z. Wang, et al. “Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3Nature Communications 9, 2516, (2018)
Z. Wang, et al. “Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures” Nano Letters 18, 4303-4308, (2018)

Quantum Transport in Graphene (石墨烯中的量子输运)
Because of the Dirac nature of its charge carriers and the presence of two valleys, graphene is the first predicted two-dimensional topological insulator. Topological state characteristics have not been observed experimentally, because the strength of the intrinsic spin-orbit interaction (SOI) is too weak. We proposed that the strength of SOI in graphene could be strongly enhanced through the proximity effect from transition metal dichalcogenides (TMDs) substrate. The enhancement of SOI was unambitiously demonstrated by the observation of weak anti-localization effect, and the type and amplitude of induced SOI was obtained by combining measurements of Shubnikov-de Haas oscillations and theoretical calculations.
Reference:
Z. Wang, et al. “Strong interface-induced spin-orbit interaction in graphene on WS2Nature Communications 6, 8339 (2015)
Z. Wang, et al. “Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides”, Physical Review X, 6, 041020 (2016)

Superconductivity in one dimensional carbon nanotubes (一维碳纳米管系统中的超导)
Nano-structuring is a well-known method to engineer material’s property, but introducing superconductivity is not within its scope. When graphene rolls into nanotube, it is predicted that the electron phonon interaction potentially will be enhanced by its curvature thus lead to superconductivity. Two types of superconducting resistive behaviors was observed in 4 Angstrom single wall carbon nanotubes, one is quasi one dimensional fluctuation superconductivity with thermally activated phase slips. Another one is the quasi 1D to 3D superconducting crossover transition, which is attributed to a Berezinskii–Kosterlitz–Thouless like transition that establishes quasi-long-range order in the transverse plane.
Reference:
R. Lortz, et al. “Superconducting characteristics of 4-Angstrom carbon nanotube-zeolite composite” Proc. Natl. Acad. Sci., 106, 7299-7303 (2009).
Z. Wang, et al. “Superconductivity in 4-Angstrom carbon nanotubes-A short review” Nanoscale, 4, 21 (2012)
Z. Wang, et al. “Superconducting resistive transition in coupled arrays of 4 Angstrom carbon nanotubes” Physical Review B, 81, 174530 (2010)
W. Shi, et al. “Superconductivity in Bundles of Double-Wall Carbon Nanotubes” Scientific Reports 2, 625 (2012)







Publications - 王 喆Publications (期刊论文)
* for co-corresponding authorship, # for equal contribution

2020

26. "Persistence of Magnetism in Atomically Thin MnPS3Crystals"
G. Long#, H. Henck#, M. Gibertini, D. Dumcenco, Z. Wang, T. Taniguchi, K. Watanabe, E. Giannini,A. F. Morpurgo*
Nano Letters, 20, 4, 2452-2459 (2020) https://doi.org/10.1021/acs.nanolett.9b05165
25.“Low-temperature monoclinic layer stacking in atomically thin CrI3crystals”
N. Ubrig*,Z. Wang, J. Teyssier,T.Taniguchi, K. Watanabe, E. Giannini, A. F. Morpurgo, M. Gibertini*
2D Materials, 7, 015007 (2020) https://doi.org/10.1088/2053-1583/ab4c64

2019

24. “Determining the phase diagram of atomically thin layered antiferromagnet CrCl3”
Z. Wang*, M. Gibertini*, D. Dumcenco, T. Taniguchi, K. Watanabe, E. Giannini, A. F. Morpurgo*
Nature Nanotechnology, 14, 1116–1122 (2019) https://doi.org/10.1038/s41565-019-0565-0 News & Views

23. “Probing magnetism in 2D materials at the nanoscale with single spin microscopy”
L.Thiel, Z. Wang, M.A. Tschudin, D. Rohner, I. Gutierrez, N. Ubrig, M. Gibertini, E. Giannini, A.F. Morpurgo, P. Maletinsky*
Science, 364, 973-976 (2019) https://doi.org/10.1126/science.aav6926

2018
22. “Tunneling spin valves based on Fe3GeTe2/hBN/ Fe3GeTe2 van der Waals heterostructures”
Z. Wang*, D. Sapkota, T.Taniguchi, K. Watanabe, D. Mandrus, A. F. Morpurgo*
Nano Letters, 7, 4303-4308 (2018) https://doi.org/10.1021/acs.nanolett.8b01278
21. “Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3
Z. Wang*, I. Gutierrez, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoglu, E. Giannini, A. F. Morpurgo*
Nature Communications, 9, 2516 (2018) https://doi.org/10.1038/s41467-018-04953-8

2008-2017
20. “Origin and magnitude of designer spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides”
Z. Wang*, D.-K. Ki, J. Y. Khoo, D. Mauro, H. Berger, L. S. Levitov and A. F. Morpurgo*
Physical Review X, 6,041020 (2016) https://doi.org/10.1103/PhysRevX.6.041020
19. “Strong interface-induced spin-orbit interaction in graphene on WS2
Z. Wang, D.-K. Ki, H. Chen, H. Berger, A. H. MacDonald, and A. F. Morpurgo*
Nature Communications 6, 8339 (2015) https://doi.org/10.1038/ncomms9339
18. “Theoretical Study of Superconductivity in 4-Angstrom Carbon Nanotube Arrays”
T. Zhang, M. Y. Sun, Z. Wang, W. Shi, R. Lortz, Z. K. Tang, N. Wang and P. Sheng
Chapter 1 of Carbon-based Superconductors: Toward high-Tc Superconductivity
Edited by Juni Haruyama, Pan Stanford Publishing, (2015)

17. “New developments in the growth of 4 Angstrom carbonnanotubes in linear channels of zeolite template”
Q. H. Chen, Z. Wang, Y. Zheng, W. Shi, D. D. Wang, Y. C. Luo, B. Zhang, J. M. Lu, H. J. Zhang, J. Pan, C. Y. Mou, Z. K. Tang and
P. Sheng
Carbon, 76, 401 (2014) https://doi.org/10.1016/j.carbon.2014.04.094

16. “Negative correlation between charge carrier density andmobility fluctuations in graphene”
J. M. Lu, J. Pan, S. S. Yeh, H. J. Zhang, Y. Zheng, Q. H. Chen, Z. Wang, B. Zhang, J. J. Lin and P. Sheng
Physical Review B, 90, 085434 (2014) https://doi.org/10.1103/PhysRevB.90.085434
15. “Large-scale Mesoscopic Transport in Nanostructured Graphene”
Z.J. Zhang, J. M. Lu, W. Shi, Z. Wang, T. Zhang, M. Y. Sun, Y. Zheng, Q. H. Chen, N. Wang, J. J. Lin, P. Sheng
Physical Review Letters, 110, 066805 (2013) https://doi.org/10.1103/PhysRevLett.110.066805
14. “Superconductivity in Bundles of Double-Wall Carbon Nanotubes”
W. Shi#, Z. Wang#, Q. C. Zhang, C. Ieong, M. Q. He, R. Lortz, Y. Zheng, Y. Cai, N. Wang, T. Zhang, H. J. Zhang, Z. K. Tang, P. Sheng,
H. Muramatsu, Y. A. Kim, M. Endo, P. T. Araujo and M. S. Dresselhaus
Scientific Reports 2, 625 (2012) https://doi.org/10.1038/srep00625
13. “Superconductivity in 4-Angstrom carbon nanotubes-A short review”
Z. Wang, W. Shi, R. Lortz and P. Sheng
Nanoscale, 4, 21 (2012) https://doi.org/10.1039/C1NR10817D
12. “Dimensional crossover transition in a system of weakly coupled superconducting nanowires”
M. Y. Sun, Z. L. Hou, T. Zhang, Z. Wang, W. Shi, R. Lortz and P. Sheng
New Journal of Physics 14, 103018 (2012) https://doi.org/10.1088/1367-2630/14/10/103018
11. “Observation of the Meissner state in superconducting arrays of 4-Angstrom carbon nanotubes”
C. Ieong, Z. Wang, W. Shi, Y.X. Wang, N. Wang, Z. K. Tang, P. Sheng, R. Lortz
Physcial Review B, 83, 184512 (2011) https://doi.org/10.1103/PhysRevB.83.184512
10. “Crossover from Peierls distortion to one-dimensional superconductivity crossover in thin arrays of (5,0) carbon nanotubes”
T. Zhang, M. Y. Sun, Z. Wang, W. Shi, P. Sheng
Physical Review B, 84, 245449 (2011) https://doi.org/10.1103/PhysRevB.84.245449
9. “Graphene magnetoresistance device in van der Pauw geometry”
J. M. Lu, H. J. Zhang, W. Shi, Z. Wang, Y. Zheng, T. Zhang, N. Wang, Z. K. Tang, P. Sheng
Nano Letters, 11, 2973 (2011) https://doi.org/10.1021/nl201538m
8. “Superconducting transitions of intrinsic arrays of weakly coupled one-dimensional superconducting chains: the case
oftheextremequasi-1D superconductor Ti2Mo6Se6
B. Bergk, A.P. Petrovic, Z. Wang, Y. Wang, D. Salloum, P. Gougeon, M. Potel, R. Lortz
New Journal of Physics, 13, 103018 (2011) https://doi.org/10.1088/1367-2630/13/10/103018
7. “Scaling of the anomalous Hall current in Fe100-x(SiO2)x films”
W. J. Xu, B. Zhang, Q. X. Wang, W. B. Mi, Z. Wang, W. Li, X. X. Zhang
Physical Review B, 83, 205311 (2011) 10.1103/PhysRevB.83.205311
6. “1D goes 2D: A Berezinskii-Kosterlitz-Thouless transition in superconducting arrays of 4-Angstrom carbon nanotubes”
Z. Wang, W. Shi, H. Xie, T. Zhang, N. Wang, Z. K. Tang, X. X. Zhang, R. Lortz, P. Sheng
Physica Status Solidi B – Basic Solid State Physics, 247, 2968-2973 (2010) https://doi.org/10.1002/pssb.
5. “Superconducting resistive transition in coupled arrays of 4 Angstrom carbon nanotubes”
Z. Wang, W. Shi, H. Xie, T. Zhang, N. Wang, Z. K. Tang, X. X. Zhang, R. Lortz, P. Sheng, I. Sheikin, A. Demuer
Physical Review B, 81, 174530 (2010) https://doi.org/10. 1103/PhysRevB.81.174530
4. “Anomalous Hall effect in Fe/Gd bilayers”
W. J. Xu, B. Zhang, Z. X. Liu, Z. Wang, W. Li, Z. B. Wu, R. H. Yu, X. X. Zhang
EPL, 90, 27004 (2010) https://doi.org/10.1209/0295-5075/90/27004
3. “The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a
topological insulator”
H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, M. H. Xie
New Journal of Physics, 12, 103038 (2010) https://doi.org/10.1088/1367-2630/12/10/103038
2. “Superconducting characteristics of 4-Angstrom carbon nanotube-zeolite composite”
R. Lortz, Q. C. Zhang, W. Shi, J. T. Ye, C. Y. Qiu, Z. Wang, H. T. He, P. Sheng, T. Z. Qian, Z. K. Tang, N. Wang, X. X. Zhang,
J. N. Wang, C. T. Chan
Proceedings of the National Academy of Sciences of the United States of America, 106, 7299-7303 (2009)
https://doi.org/10.1073/pnas.
1. “Scaling law of anomalous Hall effect in Fe/Cu bilayers”
W. J. Xu, B. Zhang, Z. Wang, S.S. Chu, W. Li, X. X. Zhang
European Physical Journal B, 65, 233-237 (2008) https://doi.org/10.1140/epjb/e2008-00350-3
































People - 王 喆Principal Investigator

Zhe Wang 王喆
Professor 教授,博导
国家“高层次人才”青年项目入选者
陕西省“高层次人才”青年项目入选者
西安交通大学 "青年拔尖人才"项目入选者
西安交通大学 "思源****"




Graduate Students


Jiakai Sun Jiani Hu Lihao Zhang
孙佳凯 呼加妮 张利昊





Research Assistant

Xiaoyu Wang Hao Feng Jiazhuo Li
王啸宇 冯昊 李佳卓







Dr. Zhe Wang - 王 喆Basic Information (基本信息)

Zhe Wang 王喆
Professor 教授,博导
国家“高层次人才”青年项目入选者
陕西省“高层次人才”青年项目入选者
西安交通大学 "青年拔尖人才"项目入选者
西安交通大学 "思源****"




Contact (联系方式)
Email: zhe.wang [at] xjtu.edu.cn
Address: Room B702, School of Science,
Xi'an Jiaotong University,
Xi'an, Shanxi Province,
P.R. China 710049
西安交通大学 兴庆校区
材料与基础学科大楼(仲英楼)B702室
中国西部科技创新港泓理楼5117室






Professional Experience (工作经历)
2019/10 - present Xi'an Jiaotong University, Professor
2019/01 - 2019/09 University of Geneva, Senior Research and Teaching Assitant
2014/03 - 2018/12 University of Geneva, Postdoc in Group of Alberto Morpurgo
2011/12 - 2014/02 The Hong Kong University of Science and Technology, Posdoc in Group of Ping Sheng




Education (教育经历)

2006/09 - 2011/11 The Hong Kong University of Science and Technology (香港科技大学)
Ph.D. in Physics, Advisor: Ping Sheng
2002/09 - 2006/07 Wuhan University (武汉大学) B.S. in Physics




Research Interest (研究领域)
Low-dimensional quantum materials and devices(低维量子材料与器件):
Quantum transport properties of low-dimensional electronic system (graphene, CNTs...)
(低维系统中的量子输运特性)
2D Magnetism (二维磁性)
Superconductivity (超导)
Spintronic devices with 2D materials (自旋电子器件)
van der Waals heterostructures (二维材料及异质结)








Openings - 王 喆Openings 招聘信息
We are currently recruiting graduate students, postdocs and junior reserachers with background in Physics and Materials Science. Please Contact Prof. Wang: zhe.wang@xjtu.edu.cn
课题组招聘硕士、博士研究生,欢迎物理及材料专业背景的同学推免或者报考,也欢迎广大本科生同学来课题组交流学习!
本课题组长期招聘博士后,研究方向为低维度系统的量子输运特性,二维材料器件制备与测量、自旋电子器件。年薪大于18万,优先推荐学校与国家博士后人才计划,提供公寓住房,子女可享受交大优质中小幼教育资源,工作优秀出站时可应聘学校副研究员或副教授岗位。
联系方式: zhe.wang [at] xjtu.edu.cn






相关话题/西安交通大学 理学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 西安交通大学电气工程学院导师教师师资介绍简介-吴坚
    吴坚研究领域(方向)1.放电等离子体及应用2.Z箍缩、X箍缩3.等离子体诊断个人及工作简历2012/09-现在西安交通大学,电气工程学院,讲师,副教授2003/09-2012/07清华大学,工程物理系,本科,博士科研项目近五年主持科研项目10余项,包括国家自然科学基金重大项目课题、面上项目、青年基金 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学理学院导师教师师资介绍简介-陈 光德
    进入我的个人主页空间-陈光德简介陈光德教授博士生导师(理学院)教育部物理专业教学指导委员会委员,中国物理学会理事,中国物理学会教学委员会副主任,陕西省物理学会理事长等职联系方式陈光德教授电话:E-mail:gdchen@xjtu.edu.cn邮编:710049地址:陕西省西安市咸宁西路28号西安交通 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学电气工程学院导师教师师资介绍简介-吴翊
    吴翊研究领域(方向)直流开断技术、短路限流技术、电弧电接触理论及其应用。个人及工作简历姓名:吴翊出生年月:1975.11技术职务:教授、博士生导师工作经历2006年6月-2008年1月,西安交通大学电气工程学院电器教研室,讲师;2008年2月-2012年8月,西安交通大学电气工程学院电器教研室,副教 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学电气工程学院导师教师师资介绍简介-吴锴
    吴锴研究领域(方向)绝缘材料电老化及击穿理论;局部放电检测及内在机理研究;城市能源系统的合理优化。个人及工作简历989年、1992年及1998年分别于西安交通大学获得学士、硕士及博士学位。1998年赴日本名古屋大学做博士后工作,后于2000年任助理教授。2003年于英国Leicester大学任研究员 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学理学院导师教师师资介绍简介-李 福利
    基本信息-李福利基本信息李福利物理学教授,博士生导师学术兼职中科院近物所重离子物理国家实验室学术委员会委员中国物理学会量子光学专业委员会委员中国光学学会光量子科学与技术专业委员会委员量子光学学报编委陕西省物理学会副理事长西安交通大学学报编委西安交通大学学位委员会副主任获奖与荣誉陕西省科学技术一等奖( ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学理学院导师教师师资介绍简介-王 延申
    进入我的个人主页空间-王延申基本信息姓名:王延申所属学院:理学院学科:物理学科系别:应用物理系进入我的个人主页空间-王延申基本信息姓名:王延申所属学院:理学院学科:物理学科系别:应用物理系 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学电气工程学院导师教师师资介绍简介-肖国春
    肖国春研究领域(方向)电力电子与电力传动领域,包括:电能质量分析与控制技术,电力电子系统的建模、仿真与控制,分布式发电技术,电力电子装置设计及应用技术等。个人及工作简历2013/01–至今,西安交通大学,电气工程学院,教授1998/03–2013/01,西安交通大学,电气工程学院,副教授1990/0 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学理学院导师教师师资介绍简介-张 胜利
    进入我的个人主页空间-张胜利基本信息张胜利二级教授博士生导师西安交通大学物理学院联系方式张胜利教授电话:传真:Email:zhangsl@xjtu.edu.cn邮编:710049通信地址:陕西省西安市咸宁西路28号西安交通大学理学院应用物理系搜索站点计数器新闻七色光“召唤”出的科研——本人的毕业博士 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学电气工程学院导师教师师资介绍简介-肖冰
    肖冰研究领域(方向)1.材料电子、晶格传导性质的第一性原理计算;2.能量转换材料如热电材料、新型光电转换材料第一性原理设计与性能预测;3.极端条件下(高温、高压)凝聚态物质状态方程与相变的量子力学计算与预测;4.强电场作用下原子分子尺度材料形变与损伤机制的分子动力学模拟与仿真。个人及工作简历2013 ...
    本站小编 Free考研考试 2021-06-26
  • 西安交通大学电气工程学院导师教师师资介绍简介-谢彦召
    谢彦召研究领域(方向)1.高功率电磁环境与电磁脉冲;2.电力系统电磁暂态现象及电力设备故障诊断;3.电磁兼容理论与试验技术;4.紧凑型脉冲功率源及辐射物理应用;5.激光与光纤传感。个人及工作简历谢彦召,男,博士。西安交通大学电气工程学院高电压技术教研室教授,博士生导师。意大利都灵理工大学电磁兼容实验 ...
    本站小编 Free考研考试 2021-06-26