删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西安交通大学能源与动力工程学院(核科学与技术学院)导师教师师资介绍简介-徐东海

本站小编 Free考研考试/2021-06-26

徐东海


研究领域(方向)
生物质能、氢能技术,超临界水技术,燃煤污染物控制技术,多相流动及传质传热技术
个人及工作简历
教育背景
2001.09~2005.06:武汉理工大学 热能与动力工程 本科、学士;
2005.09~2007.01:西安交通大学 热能工程 研究生、硕士;
2007.03~2011.06:西安交通大学 热能工程 研究生、博士。

工作经历
2011.07~2014.11:西安交通大学能动学院热能工程系 讲师;
2013.08~2014.08:美国密歇根大学(安娜堡)化学工程系 访问****;
2013.04~2016.10:西安交通大学核科学技术学科 博士后;
2016.01~2016.06:咸阳市发展与改革委员会 副主任(挂职);
2015.12~至今:西安交通大学热能工程系党支部书记兼系副主任;
2014.12 ~至今:西安交通大学能动学院热能工程系 副教授/博导。
科研项目
先后主持多项国家级和省部级纵向课题,包括国家自然科学基金面上项目、国家自然科学基金青年基金、教育部博士学科点专项科研基金、中国博士后科学基金一等资助、中国博士后科学基金特等资助、陕西省博士后基金特等资助、西安交通大学重点研发计划专项培育项目等。作为骨干成员参与国家重点研发计划课题2项,作为核心成员参与团队多项企业重大横向课题等。
学术及科研成果、专利、论文
[1]荣获2013年度陕西省优秀博士学位论文;
[2]荣获2014年第八届国际发明展览会奖金奖(排名第4);
[3]荣获2017年陕西省科技工作者创新创业大赛金奖(排名第2)。
发明专利
[1]徐东海,王树众,唐兴颖等,钱黎黎高含盐腐蚀性有机废水超临界水氧化处理系统,发明专利ZL9.X,授权时间:2014.11;
[2]徐东海,王树众,唐兴颖等,超临界水氧化或气化处理高含盐有机废水的反应器,发明专利ZL5.8,授权时间:2015.05;
[3]徐东海,王树众,张洁等,高含盐腐蚀性有机废水超临界水氧化反应装置,发明专利ZL2.5,授权时间:2015.10;
[4]徐东海,王树众,唐兴颖等,有机废水超临界水热燃烧反应器,发明专利ZL4.3,授权时间:2016.01;
[5]徐东海,林桂柯,王树众等,一种微藻水热液化制取生物油的连续式反应系统及方法,发明专利ZL20**,授权时间:2017.09;
[6]Wang Shuzhong, Xu Donghai, Tang Xingying, et.al,Supercritical water oxidation treatment system for organic wastewater with high salinity, US9,328,008,2016.05;
[7]Wang Shuzhong, Gong Yanmeng, Ma Honghe, Xu Donghai, et.al,Countercurrent tank type supercritical water reactor with a sacrificial lining, US:8,790,585,2014.07;
[8]王树众,徐东海,黄传宝等,SCWO处理难生化含氮浓有机废水的氧气回收控制系统及方法,发明专利ZL0.5,授权时间:2015.12;
[9]王树众,徐东海,黄传宝等,高含固率城市污泥的超临界水氧化处理及发电系统,发明专利ZL2.6,授权时间:2015.01;
[10]王树众,徐东海,唐兴颖等,高含盐有机废水的超临界水氧化处理系统,发明专利ZL 7.7,授权时间:2013.11;
[11]王树众,徐东海,唐兴颖等,有机废水超临界水氧化处理装置及温度控制方法,发明专利ZL9.X,授权时间:2013.07;
[12]王树众,徐东海,宋学博等,超临界水处理系统中电加热器出口温度的控制方法,发明专利ZL9.1,授权时间:2013.04;
[13]王树众,徐东海,胡昕等,废有机物的超临界水处理用反应器,发明专利ZL7.9,授权时间:2013.03;
[14]王树众,徐东海,公彦猛等,废有机物的超临界水处理系统的操作方法,发明专利ZL9.8,授权时间:2012.01;
[15]王树众,徐东海,唐兴颖等,具有多孔蒸发壁的超临界水处理反应器的压力平衡装置,发明专利ZL4.2,授权时间:2011.09;
[16]王树众,徐东海,公彦猛等,废有机物超临界水处理反应系统的控制方法,发明专利ZL2.8,授权时间:2011.07;
[17]王树众,徐东海,唐兴颖等,具有堵塞清理功能的超临界水处理系统及其堵塞清理方法,发明专利ZL 3.6,授权时间:2011.06;
[18]王树众,徐东海,公彦猛等,废有机物的超临界水处理用逆流罐式反应装置,发明专利ZL1.8,授权时间:2011.06;
[19]王树众,徐东海, 郭洋等,废有机物的超临界水处理与资源化利用系统,发明专利ZL2.2,授权时间:2011.06;
[20]王树众,葛忠权,徐东海等,超临界水处理控制方法,发明专利ZL0.4,授权时间:2014.04;
[21]王树众,王玉珍,徐东海等,超临界水氧化系统中过量氧回用及二氧化碳回收方法,发明专利ZL7.1,授权时间:2013.11;
[22]王树众,周璐,徐东海等,超临界水处理的氧化脱盐装置,发明专利ZL6.4,授权时间:2013.08;
[23]王树众,周璐,徐东海等,用于超临界水氧化系统脱盐排盐的控制方法,发明专利ZL8.1,授权时间:2013.07 ;
[24]王树众,唐兴颖,徐东海等,废有机物的超临界水处理用刮刀脱盐器,发明专利ZL8.1,授权时间:2013.07;
[25]王树众,公彦猛,徐东海等,一种高含盐废水的冷却结晶脱盐系统,发明专利ZL0.3,授权时间:2013.07;
[26]王树众,马红和,徐东海等,一种有机废水超临界加热炉及控制方法,发明专利ZL0.9,授权时间:2013.05;
[27]王树众,郭洋,徐东海等,利用辅助燃料补给热量的超临界水氧化反应系统,发明专利ZL2.5,授权时间:2013.03;
[28]王树众,郭洋,徐东海等,利用辅助燃料补给热量的超临界水氧化反应器,发明专利ZL3.X,授权时间:2012.11;
[29]王树众,公彦猛,徐东海等,高含盐量有机废水的超临界水处理系统,发明专利ZL5.7,授权时间:2012.02;
[30]王树众,陈崇明,徐东海等,废有机物的超临界水处理反应器的分区方法,发明专利ZL4.1,授权时间:2011.02。
论文
[1] Xu DH, Savage PE. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae [J]. Bioresource Technology, 2017,239:1-6. (SCI:FA3CE) (IF:5.651)
[2]Xu DH, Ma ZJ, Guo SW, et al. Corrosion characteristics of 316L as transpiring wall material in supercritical water oxidation of sewage sludge [J]. International Journal of Hydrogen Energy, 2017,42: 19819-19828. (SCI:FE4JT) (IF:3.582)
[3]Xu DH, Savage PE. Supercritical water upgrading of water-insoluble and water-soluble biocrudes from hydrothermal liquefaction of Nannochloropsis microalgae [J]. Journal of Supercritical Fluids, 2017.08. (SCI:Accepted) (IF:2.991)
[4]Xu DH, Lin GK, Ma ZJ, et al. Partial oxidative gasification of sewage sludge in supercritical water with multi-component catalyst [J]. Chemical Engineering Research and Design, 2017,124:145-151. (SCI:FD6TT) (IF:2.538)
[5]Xu DH, Huang CB, Wang SZ, et al. Characteristics analysis of water film in transpiring wall reactor [J]. International Journal of Heat and Mass Transfer, 2016,100: 559-565. (SCI:DP2ZI) (IF:3.458)
[6]Xu DH, Huang CB, Wang SZ, et al. Salt deposition problems in supercritical water oxidation [J]. Chemical Engineering Journal, 2015,279: 1010-1022. ( SCI:CP4SS) (IF:6.261)
[7]Xu DH, Savage PE. Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae [J]. Algal Research-Biomass Biofuels and Bioproducts, 2015,12:60-67. (SCI:DB9IL) (IF:5.014)
[8]Xu DH, Wang SZ, Zhang J, et al. Supercritical water oxidation of a pesticide wastewater [J]. Chemical Engineering Research & Design, 2015, 94: 396-406. (SCI: CC2SI) (IF: 2.538)
[9]Xu DH, Wang SZ, Huang CB, et al. Transpiring wall reactor in supercritical water oxidation: a technical review [J]. Chemical Engineering Research & Design, 2014,92:2626-2639. (SCI: AU6PW) (IF: 2.538)
[10]Xu DH, Savage PE. Characterization of biocrudes recovered with and without solvent after hydrothermal liquefaction of algae [J]. Algae Research-Biomass Biofuels and Bioproducts.2014,6:1-7. (SCI:AY8CN) (IF:4.694)
[11]Xu DH, Wang SZ, Tang XY, et al. Influence of oxidation coefficient on product properties in sewage sludge treatment by supercritical water [J]. International Journal of Hydrogen Energy, 2013,38:1850-1858. (SCI: 088TS) (IF:4.054)
[12]Xu DH, Wang SZ, Tang XY, et al. Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge [J]. Chemical Engineering Research & Design,2012,90: 288-297. (SCI:905ZF) (IF: 2.538)
[13]Xu DH, Wang SZ, Guo Y, et al. Catalyzed partial oxidative gasification of phenol in supercritical water [J]. Industrial & Engineering Chemistry Research,2011,50: 4301-4307. (SCI:747SY) (IF:2.237)
[14]Xu DH, Wang SZ, Gong YM, et al. A novel concept reactor design for preventing salt deposition in supercritical water [J]. Chemical Engineering Research & Design, 2010,88:1515-1522. (SCI:693HU)(IF: 2.538)
[15]Xu DH, Wang SZ, Hu X, et al. Catalytic gasification of glycine and glycerol in supercritical water[J]. International Journal of Hydrogen Energy, 2009,34 (13): 5357-5364. (SCI: 475XZ) (IF:3.945)
[16]Qian LL, Wang SZ, Xu DH, et al. Treatment of municipal sewage sludge in supercritical water: A review [J]. Water Research, 2016,89: 118-131. (SCI: DC1BE) (IF:7.715)
[17]Guo Y, Wang SZ, Xu DH, et al. Review of catalytic supercritical water gasification for hydrogen production from biomass [J]. Renewable & Sustainable Energy Reviews, 2010,14:334-343. (IF:9.122)
[18]Gong YM, Wang SZ, Xu DH, et al. Partial oxidation of landfill leachate in supercritical water: optimization by response surface methodology [J]. Waste Management, 2015,43:343-352. (SCI:CP4ST) (IF:4.669)
[19]Zhang J, Wang SZ, Xu DH, et al. Kinetics study on hydrothermal combustion of methanol in supercritical water [J]. Chemical Engineering Research & Design, 2015,98:220-230. (SCI: CL2ED) (IF:2.82)
[20]Qian LL, Wang SZ, Xu DH, et al. Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation [J]. Bioresource Technology, 2015,176: 218-224. (SCI: AW0LE) (IF:6.102)
[21]Tang XY, Wang SZ, Xu DH, et al. Corrosion behavior of Ni-Based alloys in supercritical water containing high concentrations of salt and oxygen [J]. Industrial & Engineering Chemistry Research, 2013,52: 18241-18250. (SCI: 281YS) (IF:3.027)
[22]Zhou L, Wang SZ, Xu DH, et al. Impact of mixing for the production of CuO nanoparticles in supercritical hydrothermal synthesis [J]. Industrial & Engineering Chemistry Research, 2014,53: 481-493. (SCI:288BF) (IF:3.027)
[23]Guo Y, Wang SZ, Xu DH, et al. Hydrogen production by catalytic supercritical water gasification of nitriles [J]. International Journal of Hydrogen Energy, 2010,35: 4474-4483. (SCI:606IU) (IF:3.647)
[24]Guo Y,Thomas Y,Song WH,Xu DH,et al. A review of bio-oil production from hydrothermal liquefaction of algae [J]. Renewable and Sustainable Energy Reviews, 2015,48:776-790. (IF:5.901)
[25]Li YH, Wang SZ, Tang XY, Xu DH, et al. Effects of sulfides on the corrosion behavior of Inconel 600 and Incoloy 825 in supercritical water [J]. Oxidation of Metals, 2015, 84: 509-526. (SCI: CV0QA) (IF:1.359)
[26]Wang YZ, Wang SZ, Guo Y, Xu DH, et al. Oxidative degradation of lurgi coal gasification wastewater: optimization using response surface methodology [J]. Environmental Progress & Sustainable Energy, 2014, 33: 1258-1265. (SCI: AR9CD) (IF:1.878)
[27]Gong YM, Wang SZ, Tang XY, Xu DH, et al. Supercritical water oxidation of acrylic acid production wastewater [J]. Environmental Technology, 2014, 35:907-916. (SCI: 291JM) (IF:1.76)
[28]Zhang J, Wang SZ, Guo Y, Xu DH, et al. Co-Oxidation effects of methanol onacetic acid and phenol in supercritical water [J]. Industrial & Engineering Chemistry Research, 2013,52:10609-10618. (SCI: 199TQ) (IF:3.027)
[29]Wang YZ, Wang SZ, Guo Y, Xu DH, et al. Evaluation of the combined processes of supercritical water oxidation and gasification for lurgi coal gasification wastewater treatment [J]. Fresenius Environmental Bulletin, 2013,22:2695-2700. (SCI: 251EY)
[30]Zhang J, Wang SZ, Guo Y, Xu DH, et al. Supercriticalwater oxidation of polyvinyl alcohol and desizing wastewater: Influence of NaOH on the organic decomposition [J]. Journal of Environmental Sciences, 2013,25: 1583-1591. (SCI: 204HR) (IF:3.243)
[31]Wang YZ, Wang SZ, Guo Y, Xu DH, et al. Oxidative degradation of lurgi coal-gasification wastewater with Mn2O3, Co2O3, and CuO catalysts in supercritical water [J]. Industrial & Engineering Chemistry Research, 2012, 51:16573-16579. (SCI: 065MZ) (IF:3.027)
[32]Guo Y, Wang SZ, Gong YM, Xu DH, et al. Partial oxidation of municipal sludge with activited carbon catalyst in supercritical water [J]. Journal of Hazardous Materials, 2010,180:137-144. (SCI: 619VY) (IF:6.393)
[33]Wang SZ, Zhang J, Guo Y, Xu DH, et al. Characteristics of methanol hydrothermal combustion: detailed chemical kinetics coupled with simple flow modeling study [J]. Industrial & Engineering Chemistry Research, 2017. (SCI: EU8SE) (IF:2.843)
[34]Xu DH, Wang SZ, Huang CB, et al. Removal of organic matters in pesticide wastewater by supercritical water oxidation [C]. The 3rd International Conference on Energy and Environmental Protention, April,2014,Xian,China. (EI:20**3)
[35]Xu DH, Wang SZ, Huang CB, et al. Deposition properties of sodium carbonate in supercritical water in a continuous-flow tubular reactor [C]. The 3rd International Conference on Energy, Environment and Sustainable Development, November, 2013, Shanghai, China. (EI: 20**4)
[36]Xu DH, Wang SZ, Chen LW, et al. Numerical simulation of a transpiring wall reactor [C]. International Conference on Biological, Medical and Chemical Engineering, December, 2013, 695-702,Hong Kong. (EI: 984)
联系方式
电子邮箱:xudonghai@mail.xjtu.edu.cn

联系电话:
个人主页: http://gr.xjtu.edu.cn/web/xudonghai
联系地址:西安市咸宁西路28号西安交通大学能源馆419室

更新日期:2017-11-15
相关话题/能源 西安交通大学