删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西北农林科技大学资源环境学院导师教师师资介绍简介-李志

本站小编 Free考研考试/2021-07-07

一、个人简介
李志,博士,教授,博导。入选国家“****”青年拔尖人才支持计划和陕西省“青年科技新星”,获教育部自然科学二等奖(2/7)和陕西省青年科技奖各1项,任中国地理学会水文地理专业委员会委员、中国环境科学学会环境地学分会委员、国际水文科学协会中国委员会水资源系统分委员会副主席。
工作经历:
2016/12?今, 西北农林科技大学资源环境学院,副院长。
2015/07?2017/02,加拿大萨斯喀彻温大学,访问****。
2014/12?今, 西北农林科技大学资源环境学院,教授。
2011/03?2012/03,加拿大魁北克大学,访问****。
2007/07?2014/12,西北农林科技大学资源环境学院,讲师、副教授。
学习经历:
2004/09?2007/07,中国科学院水利部水土保持研究所,生态学,理学博士。
2001/09?2004/07,西北大学城市与资源学系,环境科学与工程,工学硕士。
1997/09?2001/07,烟台师范学院地理与旅游系,地理科学,理学学士。
二、研究方向
主要从事旱区水循环与水环境演变机理与调控方面的研究。分析旱区气候和土地利用等环境要素的时空演变并进行归因分析,研究河水流量和地下水补给的变化规律与主控因素,探究地表水和地下水的溶质含量、面源污染状况与来源。具体分为三个方面:
1. 旱区环境要素的演变规律:旱区环境要素较其他区域更加脆弱和敏感,需明确全球变化背景下的演变特征。此方向基于大尺度和长序列的遥感和气候数据,使用生态模型和气候模式,探讨气候和土地利用等环境要素的时空变化特征、驱动力以及归因。关注两个问题:(1) 旱区植被在时间和空间上发生了什么变化?植被变化的适应性如何?如何调控?强调气候与植被的耦合关系;(2) 未来气候如何变化?如何有效的预测未来气候?强调GCM降尺度方法的开发。
2. 旱区水循环机制变化:旱区环境要素的轻微变化会被极大放大到水循环中,显著影响水量和时程分配。此方向基于水文模拟和同位素示踪技术,着重探讨地表水和地下水循环的演变机理,关注三个问题:(1) 旱区地表径流形成的机理?强调水文观测和模拟技术。(2) 旱区深厚不饱和带中的土壤水分和地下水如何补给?强调同位素等多种示踪剂的应用。(3) 影响地表水循环和地下水补给的关键因子是什么?强调空间和时间演变过程与环境因子的关系探讨。
3. 旱区水环境演变:旱区水质恶化会进一步减少有限的水资源量。此方向通过大范围长期水样采集与水化学测定,探讨水环境的时空特征和调控措施,关注两个问题:(1) 旱区水化学组成有什么特征?强调大尺度和长序列的时空分析。(2) 干旱水体中的溶质来源是什么?主导控制因素是什么?强调水文地球化学技术的应用和人类活动的影响。
三、学术成果
先后主持国家自然科学基金项目4项、霍英东基金1项、陕西省自然科学基金重点项目1项和中国博士后科学基金1项等;参与科技支撑、973和948等多项。在HESS、Journal of Hydrology、Agricultural and Forestry Meteorology、Climate Dynamics、JGR-Atmosphere、Geoderma和Agriculture Ecosystem & Environment等国际知名杂志发表第一作者和通讯作者SCI论文40多篇;单篇最高被SCI论文他引400多次,3篇论文为ESI前1%高引用论文。
科研项目:
[1] 国家自然科学基金面上项目,**,黄土区潜水补给的方式、速率与控制因素,2021/01-2024/12,在研,主持。
[2] 国家自然科学基金联合基金,U**,基于GCM动力统计联合降尺度的旱区水文变异预估,2018/01?2020/12,已结题,主持。
[3] 国家自然科学基金面上项目,**,基于环境同位素的黄土高塬沟壑区水循环机制研究,2012/01?2015/12,已结题,主持。
[4] 国家自然科学基金青年科学基金,**,GCM统计降尺度中气象变量空间相关性的重建,2012/01?2014/12,已结题,主持。
[5] 国家自然科学基金国际合作研究项目,,中国黄土高原和南非典型流域泥沙来源及调控对策,2018/01/01?2020/12/31,已结题,课题主持。
[6] 国家自然科学基金重大研究计划重点项目,**,青藏高原湖泊过程及其与大气相互作用的高分辨率模式发展和模拟研究,2017/01?2020/12,已结题,课题主持。
[7] 中国科学院国际伙伴计划,161461KYSB**,气候变化对中国黄河中游和塞尔维亚萨瓦河流域农业水土环境影响评估及适应对策,2018/01/01?2020/12/31,已结题,课题主持。
[8] 陕西省自然科学基础研究计划重点项目,2018JZ4001,基于氚质量平衡法的洛川塬区地下水补给机制研究,2018/01?2020/12,已结题,主持。
[9] 黄土高原土壤侵蚀与旱地农业国家重点实验室主任基金,K-1423,长武塬区地下水补给机制及对土地利用变化的响应,2014/01?2016/12,已结题,主持。
[10] 霍英东教育基金会青年教师基金基础性研究课题,141016,黄土高原气候变化的水文情景分析,2014/03?2017/02,已结题,主持。
[11] 陕西省科学技术研究发展计划,2013KJXX-18,黄土塬区土地利用变化对土壤水分入渗的影响,2013/01?2015/12,已结题,主持。
[12] 中国博士后科学基金,,基于环境同位素的黄土塬区地下水补给机制研究,2010/09?2011/12,已结题,主持。
科技奖励:
[1] 2018年,中组部“****”青年拔尖人才。
[2] 2018年,陕西省青年科技奖。
[3] 2018年,教育部自然科学二等奖,变化环境下极端水文事件模拟及不确定性理论和方法,2/7。
[4] 2013年,陕西省青年科技新星。
部分论文(第一作者和通讯作者SCI):
旱区环境变化:
[1] Peng Shouzhang, Ding Yongxia, Liu Wenzhao*, Li Zhi*. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 2019, 11(4): 1931-1946. DOI: 10.5194/essd-11-1931-2019. (SCI, IF="10.951)
[2] Peng Shouzhang, Li Zhi*. Incorporation of potential natural vegetation into revegetation programs for sustainable land management. Land Degradation & Development, 2018, 29(10): 3503-3511. DOI: 10.1002/ldr.3124. (SCI, IF="7.27)
[3] Li Jingjing, Peng Shouzhang, Li Zhi*. Detecting and attributing vegetation changes on China’s Loess Plateau. Agricultural and Forest Meteorology, 2017, 247: 260-270. DOI: 10.1016/j.agrformet.2017.08.005. (SCI, IF="3.887)
[4] Li Zhi*, Zheng Fenli, Liu Wenzhao. Spatiotemporal characteristics of reference evapotranspiration during 1961-2009 and its projected changes during 2011-2099 on the Loess Plateau of China. Agricultural and Forest Meteorology, 2012, 154-155: 147-155. DOI: 10.1016/j.agrformet.2011.10.019. (SCI, IF="3.887)"
[5] Peng Shouzhang, Li Zhi*. Potential land use adjustment for future climate change adaptation in revegetated regions. Science of the Total Environment, 2018, 639: 476-484. DOI: 10.1016/j.scitotenv.2018.05.194. (SCI, IF="4.9)
[6] Li Jingjing, Li Zhi*, Lü Zhemin. Analysis of spatiotemporal variations in land use in the Loess Plateau in China during 1986-2010. Environmental Earth Sciences, 2016, 75: 997. DOI: 10.1007/s12665-016-5807-y. (SCI, IF="1.765)
[7] Li Zhi*, Li Jingjing, Shi Xiaoping. A two-stage multisite and multivariate weather generator. Journal of Environmental Informatics, 2019, DOI:10.3808/jei.. (SCI, IF="4.521)
[8] Li Zhi*. A new framework for multi-site weather generator: a two-stage model combining a parametric method with a distribution-free shuffle procedure. Climate Dynamics, 2014, 43(3-4):657-669. DOI: 10.1007/s00382-013-1979-2. (SCI, IF="4.619)"
[9] Li Zhi*, Brissette F, Chen J. Assessing the applicability of six precipitation probability distribution models on the Loess Plateau of China. International Journal of Climatology, 2014, 34(2): 462-471. DOI: 10.1002/joc.3699. (SCI, IF="3.76)
[10] Li Zhi*, Brissette Francois, Chen Jie. Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrological Processes, 2013, 27(25): 3718-3729. DOI: 10.1002/hyp.9499. (SCI, IF="3.014)
[11] Li Zhi*, Zheng Fenli, Liu Wenzhao, Jiang Dejuan. Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st Century. Global and Planetary Change, 2012, 82-83: 65-73. DOI: 10.1016/j.gloplacha.2011.11.008. (SCI, IF="3.915)
[12] Li Zhi*, Shi Xiaoping. Stochastic generation of daily precipitation considering diverse model complexity and climates. Theoretical and Applied Climatology, 2019, 137, 839-853. DOI: 10.1007/s00704-018-2638-7. (SCI, IF="2.321)
[13] Li Zhi*, Shi Xiaoping, Li Jingjing. Multisite and multivariate GCM downscaling using a distribution-free shuffle procedure for correlation reconstruction. Climate Research, 2017, 72(2): 141-151. DOI: 10.3354/cr01460. (SCI, IF="1.578)
[14] Li Zhi*, Lü Zhemin, Li Jingjing, Shi Xiaoping. Links between the spatial structure of weather generator and hydrological modeling. Theoretical and Applied Climatology, 2017, 128(1): 103-111. DOI: 10.1007/s00704-015-1691-8. (SCI, IF="2.64)
[15] Li Zhi*, Li Yanping, Shi Xiaoping, Li Jingjing. The characteristics of wet and dry spells for the diverse climate in China. Global and Planetary Change, 2017, 149: 14-19. DOI: 10.1016/j.gloplacha.2016.12.015. (SCI, IF="3.915)
[16] Li Zhi, Zheng Fenli*, Liu Wenzhao, Flanagan Dennis. Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961-2007. Quaternary International, 2010, 226 (1-2): 92-100. DOI: 10.1016/j.quaint.2010.03.003. (SCI, IF="2.199)


旱区水循环机制:
[1] Shi Peijun, Huang Yannan, Ji Wangjia, Xiang Wei, Evaristo Jaivime, Li Zhi*. Impacts of deep-rooted fruit trees on recharge of deep soil water using stable and radioactive isotopes. Agricultural and Forest Meteorology, 2021, 300: 108325. DOI: 10.1016/j.agrformet.2021.108325. (SCI, IF="4.651)
[2] Ji Wangjia, Huang Yanan, Li Bingbing, Li Zhi*. Recharge mechanism of deep soil water and the response to land use change in the loess deposits. Journal of Hydrology, 2021, 592: 125817. DOI: 10.1016/j.jhydrol.2020.125817. (SCI, IF="4.5)
[3] Li Bingbing, Biswas Asim, Wang Yunqiang, Li Zhi*. Identifying the dominant effects of climate and land use change on soil water balance in deep loessial vadose zone. Agricultural Water Management, 2021, 245: 106637. DOI: 10.1016/j.agwat.2020.106637. (SCI, IF="4.021)
[4] Xiang Wei, Evaristo Jaivime, Li Zhi*. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, 2020, 369: 114321. DOI: 10.1016/j.geoderma.2020.114321. (SCI, IF="4.848)
[5] Yang Wuchao, Jin Fengmei, Si Yajun, Li Zhi*. Runoff change controlled by combined effects of multiple environmental factors in a cold and arid watershed in northwest China. Science of the Total Environment, 2021, 756: 143995. DOI: 10.1016/j.scitotenv.2020.143995. (SCI, IF="6.551)
[6] Jin Fengmei, Yang Wuchao, Fu Jinxia, Li Zhi*. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Science of The Total Environment, 2021, 773: 145514. DOI: 10.1016/j.scitotenv.2021.145514. (SCI, IF="6.551)
[7] Ning Tingting, Li Zhi*, Feng Qi*, Chen Wen, Li Zongxing. Effects of forest cover change on catchment evapotranspiration variation in China. Hydrological Processes, 2020, 34(10): 2219-2228. DOI: 10.1002/hyp.13719. (SCI, IF="3.256)
[8] Huang Yanan, Evaristo Jaivime, Li Zhi*. Multiple tracers reveal different groundwater recharge mechanisms in deep loess deposits. Geoderma, 2019, 353: 204-212. DOI: 10.1016/j.geoderma.2019.06.041. (SCI, IF="4.336)
[9] Li Bingbing, Wang Yunqiang, Hill Robert, Li Zhi*. Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model. Agriculture, Ecosystems & Environment, 2019, 285: 106645. DOI: 10.1016/j.agee.2019.106645. (SCI, IF="3.954)
[10] Li Zhi*, Scott Jasechko, Bingcheng Si*. Uncertainties in tritium mass balance models for groundwater recharge estimation. Journal of Hydrology, 2019, 571: 150-158. DOI: 10.1016/j.jhydrol.2019.01.030. (SCI, IF="3.727)
[11] Li Zhi*, Si Bingcheng*. Reconstructed precipitation tritium leads to overestimated groundwater recharge. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9858-9867. DOI: 10.1029/2018JD028405. (SCI, IF="3.38)
[12] Li Zhi*, Chen Xi, Liu Wenzhao, Si Bingcheng*. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Science of the Total Environment, 2017, 586: 827-835. DOI: 10.1016/j.scitotenv.2017.02.061. (SCI, IF="4.9)"
[13] Li Zhi*, Coles Anna, Xiao Jun*. Groundwater and streamflow sources in China's Loess Plateau on catchment scale. CATENA, 2019, 181: 104075. DOI: 10.1016/j.catena.2019.104075. (SCI, IF="3.851)
[14] Li Zhi*, Xiang Wei, Lin Xueqing, Chen Xi, Huang Tianming. Stable isotope tracing of headwater sources in a river on the Loess Plateau of China. Hydrological Sciences Journal, 2017, 62(13): 2150-2159. DOI: 10.1080/**.2017.**. (SCI, IF="2.222)
[15] Li Zhi, Jin Jiming. Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China. Hydrology and Earth System Sciences, 2017, 21(11): 5531-5546. DOI: 10.5194/hess-21-5531-2017. (SCI, IF="4.437)
[16] Li Zhi*, Liu Wenzhao, Zhang Xunxhang, Zheng Fenli. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 2009, 377(1-2): 35-42. DOI: 10.1016/j.jhydrol.2009.08.007. (SCI, IF="2.305)
[17] Li Zhi*, Ning Tingting, Li Jingjing, Yang Daqing. Spatiotemporal variation in the attribution of streamflow changes in a catchment on China's Loess Plateau. CATENA, 2017, 158: 1-8. DOI: 10.1016/j.catena.2017.06.008. (SCI, IF="3.191)
[18] Li Zhi*, Lin Xueqing, Cloes Anna, Chen Xi. Catchment-scale surface water-groundwater connectivity on China’s Loess Plateau. CATENA, 2017, 152: 268-276. DOI: 10.1016/j.catena.2017.01.026. (SCI, IF="3.191)
[19] Ning Tingting, Li Zhi*, Liu Wenzhao*. Separating the impacts of climate change and land surface alteration on runoff reduction in the Jing River catchment of China. CATENA, 2016, 147: 80-86. DOI: 10.1016/j.catena.2016.06.041. (SCI, IF="3.191)
[20] Li Zhi*, Liu Wenzhao, Zhang Xunchang, Zheng Fenli. Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Climatic Change, 2011, 105(1-2): 223-242. DOI: 10.1007/s10584-010-9875-9. (SCI, IF="3.496)
[21] Li Zhi*, Liu Wenzhao, Zhang Xunchang, Zheng Fenli. Assessing and regulating the impacts of climate change on water resources in the Heihe watershed on the Loess Plateau of China. Sci China Earth Sci, 2010, 53(5): 710-720. DOI: 10.1007/s11430-009-0186-9. (SCI, IF="1.989)
旱区水环境演变:
[1] Huang Yanan, Li Bingbing, Li Zhi*. Conversion of degraded farmlands to orchards decreases groundwater recharge rates and nitrate gains in the thick loess deposits. Agriculture, Ecosystems & Environment, 2021, 314: 107410. DOI:10.1016/j.agee.2021.107410. (SCI, IF="4.241)
[2] Ji Wangjia, Xiao Jun, Toor Gurpal, Li Zhi*. Nitrate-nitrogen transport in streamwater and groundwater in a loess covered region: Sources, drivers, and spatiotemporal variation. Science of the Total Environment, 2021, 761: 143278. DOI: 10.1016/j.scitotenv.2020.143278. (SCI, IF="6.551)
[3] Zhou Jian, Li Shujian, Liang Xiaoxue, Feng Xuemin, Wang Tiecheng, Li Zhi*, Zhu Lingyan*. First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China. Journal of Hazardous Materials, 2021, 404: 124134. DOI: 10.1016/j.jhazmat.2020.124134. (SCI, IF="9.038)
[4] Ji Wangjia, Huang Yanan, Li Bingbing, Hopkins David, Li Zhi*. Legacy nitrate in the deep loess deposits after conversion of arable farmland to non-fertilizer land uses for degraded land restoration. Land Degradation and Development, 2020, DOI: 10.1002/LDR.3532. (SCI, IF="4.275)
[5] Kun Hua, Jun Xiao, Shujian Li, Li Zhi*. Analysis of hydrochemistry characteristics and controlling factors in the Fen River of China. Sustainable Cities and Society, 2020, 52: 101827. DOI: 10.1016/j.scs.2019.101827. (SCI, IF="4.624)
[6] Li Zhou, Xiao Jun, Jaivime Eva, Li Zhi*. Spatiotemporal variations in the hydrochemical characteristics and controlling factors of streamflow and groundwater in the Wei River of China. Environmental Pollution, 2019, 254, DOI: 10.1016/j.envpol.2019.113006. (SCI, IF="5.714)
[7] Huang Yanan, Chang Qingrui, Li Zhi*. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Science of the Total Environment, 2018, 628-629: 443-452. DOI: 10.1016/j.scitotenv.2018.02.076. (SCI, IF="4.9)
[8] Kou Yongchao, Li Zhou, Hua Kun, Li Zhi*. Hydrochemical Characteristics, Controlling Factors, and Solute Sources of Streamflow and Groundwater in the Hei River Catchment, China. Water, 2019, 11(11): 2293. DOI: 10.3390/w**. (SCI, IF="2.524)
四、联系方式
地址:陕西杨凌邰城路3号81信箱
电话:
Email: lizhibox@nwafu.edu.cn
网址:https://publons.com/researcher/**/zhi-li/





相关话题/西北农林科技大学 资源