删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西北工业大学力学与土木建筑学院导师教师师资介绍简介-李春

本站小编 Free考研考试/2021-06-29


相册


基本信息 The basic information
李春

力学与土木建筑学院


博士研究生毕业

博士


教授




力学,物理学,材料科学与工程





工作经历 Work Experience
2007.9-2009.9 德国凯泽斯劳滕工业大学物理系 博士后
2009.9-2015.4 西北工业大学力学与土木建筑学院 副教授
2015.5-至今 西北工业大学力学与土木建筑学院 教授(博士生导师)
2018.4-2018.5 德国凯泽斯劳滕工业大学 访问****(每两年一次)
2019.11-2020.8加拿大曼尼托巴大学机械工程系 访问****


2016.1-2017.12 西北工业大学力学与土木建筑学院院长
2016-2018 西北工业大学学术委员会委员,专业技术职务评审委员会委员,教学委员会委员
2016-至今 西北工业大学力学与土木建筑学院学术委员会委员
2019.3-至今 西北工业大学学位评定分委员会(第六分会)副主席



教育经历 Education Experience
1997.9-2001.6 南京航空航天大学航空宇航学院 飞行器设计专业 工学学士
2001.9-2007.6 南京航空航天大学纳米科学研究所 工程力学专业 工学博士
2004.6-2005.8 德国马普学会金属研究所 纳米力学 访问博士生


教育教学 Education And Teaching
主讲本科生课程《理论力学》(64学时);
主讲本科生国际班全英文课《Theoretical Mechanics》(48学时);

主讲研究生课程《计算纳米力学》(40学时,理论+讲座+研讨)。



招生信息 Admission Information
西工大微纳尺度物理力学研究团队现有教授1人,副教授2人,讲师/助理教授3人,博士后2人,博士/硕士研究生10人。另外聘有德国凯泽斯劳滕工业大学海外特聘研究员1人,澳洲国立大学海外特聘研究员1人。

团队主要科研兴趣为材料多场耦合行为的多尺度研究,应用经典力学/微纳米力学/物理力学方法研究功能材料及其纳米结构的力、电、磁、光特性和多场耦合性能,设计适用于新型纳尺度器件的功能结构单元。主要研究方向包括:(1)磁性纳米结构中的多场耦合特性及其调控机理研究;(2)功能材料及其纳米结构特性的多尺度物理力学研究(实验表征+理论计算)。

欢迎对相关研究方向感兴趣的同学加入我们的研究团队!



科学研究 Scientific Research
近年来主持国家自然科学基金青年基金、面上项目、教育部博士点基金、陕西省自然科学基金、机械结构力学及控制国家重点实验室开放课题、教育部留学回国人员科研启动项目、西工大科技创新“310计划”等科研项目。入选教育部2012年度“新世纪优秀人才支持计划”,西北工业大学2009年度“翱翔之星”培养计划。发表学术论文50余篇,被引用总次数超过750次,H因子14。担任Nanoscale、Physical Review B、Journal of Physical Chemistry Letters、Applied Physics Letters、Journal of Applied Physics、Scientific Reports等国际知名期刊审稿人。
近年主持的科研项目:
(1)二维纳米材料中力-磁-光耦合动力学行为的微观机理及调控研究 国家自然科学基金/面上项目 2019.1-2022.12
(2)微纳结构表面润湿特性及调控机理研究 陕西省自然科学基金/面上项目 2020.1-2021.12
(3)应变调控内嵌富勒烯磁光动力学特性的机理研究与器件设计 国家自然科学基金/面上项目 2016.1-2019.12
(4)分子磁性体系中超快自旋动力学机理的物理力学研究 教育部“新世纪优秀人才支持计划” 2013.1-2015.12
(5)磁性纳米结构中基于Λ进程的超快自旋动力学研究 国家自然科学基金/青年基金项目 2011.1-2013.12
(6)内嵌磁性金属富勒烯中的超快自旋动力学研究 陕西省自然科学基金/青年基金 2014.5-2016.4
(7)多场耦合下分子磁体中的超快自旋操控研究 国家重点实验室开放基金 2012.10-2014.10



学术成果 Academic Achievements
Researcher ID of Chun Li(点击查看)Peer reviewed articles (Important Papers in bold, newest first)
[1] J. Liu*, C. Li*, W. Jin, G. Lefkidis*, and W. Hübner, Long-distance ultrafast spin transfer over a zigzag carbon chain structure, Phys. Rev. Lett. 126, 037402 (2021).
[2] H. Ren, F. Yang, C. Li*, and C. Deng, Head-on collision of binary nanodroplets on rough surfaces: Impact velocity dependent spreading dynamics, Appl. Surf. Sci. 541, 148426 (2021).
[3] M. Y. Qiu, W. Jin*, S.-X. Qu, C. Li, G. Lefkidis*, and W. Hubner, Optically- and thermally-induced electronic transitions in a three-level system, Phys. Scr. 95, 105808 (2020).
[4] P. Wang, M. Qiu, X. Lu, W. Jin*, C. Li, G. Lefkidis, and W. Hübner, First-principles study of spin properties and laser-induced ultrafast spin dynamics in transition-metal oxide clusters TM3O30/+ (TM=Fe, Co, and Ni), Phys. Rev. B 101, 104414 (2020).
[5] J. Liu, Y. Zhang, C. Li*, W. Jin, G. Lefkidis, and W. Hübner, Magneto-straintronics on a Co-coordinating metalloboronfullerene, Phys. Rev. B 102, 024416 (2020).
[6] J. Shang, C. Li, X. Tang, A. Du, T. Liao, Y. Gu, Y. Ma, L. Kou*, and C. Chen, Multiferroic decorated Fe2O3 monolayer predicted from first principles, Nanoscale 12, 14847 (2020).
[7] H. Ren, F. Yang, C. Li*, and C. Deng, Controllable dewetting transition on graphene-based nanotextured surfaces, Appl. Surf. Sci. 520, 146374 (2020).
[8] J. Shang, X. Tang, X. Tan, A. Du, T. Liao, S. C. Smith, Y. Gu, C. Li, and L. Kou*, Stacking-dependent interlayer magnetic coupling in 2D CrI3/CrGeTe3 nanostructures for spintronics, ACS Appl. Nano Mater. (Cover Article) 3(2), 1282 (2020).
[9] P. Wang, M. Qiu, X. Lu, W. Jin*, C. Li, G. Lefkidis, and W. Hübner, First-principles study of spin properties and laser-induced ultrafast spin dynamicsin transition-metal oxide clusters TM3O30/+ (TM=Fe, Co, and Ni), Phys. Rev. B 101, 104414 (2020).
[10] Y. Jia, C. Li*, J. Jiang, N. Wei, Y. Chen, and Y. J. Zhang, Molecular dynamics simulations for anisotropic thermal conductivity of borophene, CMC-Computers, Materials & Continua, 63(2), 813 (2020).
[11] T. Chen, J. Li*, S. Chen, and C. Li, Shear band multiplication induced strong strain delocalization and high tensile ductility in amorphous thin films by metallic substrates, Int. J. Solids Struct. 195, 1 (2020).
[12] X. Wang, J. Shang, M. Zhu, X. Zhou, R. Hao, L. Sun, H. Xu, J. Zheng*, X. Lei, C. Li, L. Kou*, and Q. Feng*, Controlled growth of large-scale uniform 1T' MoTe2 crystals with tunable thickness and their photodetector applications, Nanoscale Horizons 5, 954 (2020).
[13] Z. Wang, F. Yang, J. Shang, N. Wei, L. Kou, and C. Li*, Mechanical properties of CNT-reinforced Ni3Al composites: the role of chirality, temperature, and volume fraction, J. Phys.: Condens. Matter 32, 205301 (2020).
[14] Z. Wang, H. Pei, J. Shang, L. Kou, Z. Wen, and C. Li*, First-principles thermodynamics and experimental study of interface oxidation in Ni/Ni3Al structures, Phys. Chem. Chem. Phys. 21, 18316 (2019).
[15] Z. Wang, Q. Hu, J. Zhao, and C. Li*, Failure mode transformation of ZnO nanowires under uniaxial compression: from phase transition to buckling, Nanotechnology 30, 375702 (2019).
[16] T. Chen, W. Lu, J. Li*, S. Chen, C. Li, and G. J. Weng, Tailoring tensile ductility of thin film by grain size graded substrates, Int. J. Solids Struct. 166, 124 (2019).
[17] S. Li, H. Ren, Y. Zhang, X. Xie, K. Cai, C. Li*, and N. Wei*, Thermal conductivity of two types of 2D carbon allotropes: a molecular dynamics study, Nanoscale Research Letters 14, 7 (2019).
[18] H. Du, J. Liu, N. Zhang, J. Chang, W. Jin*, C. Li, G. Lefkidis and W. Hübner, Theoretical study of laser-induced ultrafast spin dynamics in small iron-benzene clusters and of related laser and magnetic-field effects, Phys. Rev. B 99, 134430 (2019).
[19] Z. Zheng, Q. Feng*, M. Zhu, J. Shang, M. Li, C. Li, L. Kou, J. Zheng, and C. Wang*, Electrochemical sensor for the discrimination of bilirubin in real human blood based on Au nanoparticles/ tetrathiafulvalene –carboxylate functionalized reduced graphene oxide 0D-2D heterojunction, Analytica Chimica Acta 1072, 46-53 (2019)
[20] R. Huang, C. Li*, W. Jin, G. Lefkidis, and W. Hübner, Ultrafast spin dynamics in a double-magnetic-center endohedral fullerene Y2C2@C82-C2(1), Acta Phys. Sin. 68, 023101 (2019). [in Chinese]
[21] N. Zhang, H. Du, J. Chang, W. Jin*, C. Li, G. Lefkidis and W. Hübner, Ab initio study of ultrafast laser-induced spin flip, spin-flip transfer, and spin crossover in ComBzn+/0 clusters (m, n = 1, 2), Phys. Rev. B 98, 104431 (2018).
[22] J. Shang, F. Yang, C. Li*, N. Wei, and X. Tan, Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: A molecular dynamics simulation, Computational Materials Science148, 200–206 (2018).
[23] Q. Feng*, H. Liu, M. Zhu, J. Shang, D. Liu, X. Cui, D. Shen, L. Kou, D. Mao, J. Zheng, C. Li, J. Zhang, H. Xu, and J. Zhao, Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application, ACS Appl. Mater. Interfaces 10(11), 9679-9687 (2018).
[24] C. Li*, J. Liu, G. Lefkidis, and W. Hübner, Reversible ultrafast spin switching on Ni@B80 endohedral fullerene, Phys. Chem. Chem. Phys. 19, 673 (2017).
[25] W. Jin*, D. Chaudhuri, C. Li, G. Lefkidis, and W. Hubner, Laser-induced ultrafast spin and rotational dynamics in cobalt trimer cation, J. Supercond. Nov. Magn. 30, 801-806 (2017).
[26] C. Xue*, A. He*, C. Li, and Y. Zhou, Stability of vortex rotation around a mesoscopic square superconducting ring under radially injected current and an external magnetic field, J. Phys.: Condens. Matter 29, 135401 (2017).
[27] H. Li*, C. Li, and H, Yuan, Prediction of fatigue crack growth retardation using a cyclic cohesive zone model, Arch. Appl. Mech. 87(6), 1061-1075 (2017).
[28] C. Li*, J. Liu, S. Zhang, G. Lefkidis, and W. Hübner, Strain assisted ultrafast spin switching on Co2@C60endohedral fullerenes, Carbon 87, 153-162 (2015).
[29] C. Li*, J. Liu, S. Zhang, G. Lefkidis, and W. Hübner, Strain effect on the ultrafast spin switching of cobalt-doped carbon fullerenes, IEEE Trans. Magn.51, ** (2015).
[30] C. Li*, J. Shang, L. Kou, Z. Yue, Synergistic effect of alloying elements doping and external pressure on the elastic property of Ni3Al: A first-principles study,AIP Advances 5, 077136 (2015).
[31] C. Li*, S. Zhang, W. Jin, G. Lefkidis, and W. Hübner, Controllable spin-dynamics cycles and ERASE functionality on quasilinear molecular ions, Phys. Rev. B 89, 184404 (2014).
[32] W. Jin*, C. Li, G. Lefkidis, and W. Hübner, Laser control of ultrafast spin dynamics on homodinuclear iron- and nickel-oxide clusters, Phys. Rev. B 89, 024419 (2014).
[33] S. Zhang and C. Li*, Study on the strain-modulation mechanism on the piezoelectricity of ZnO (in Chinese), Sci. Sin.-Phys. Mech. Astron.44, 514 (2014).
[34] W. Jin*, C. Li, G. Lefkidis, and W. Hübner, Ultrafast spin flip on homodinuclear clusters, Springer Proc. Phys. 159, 134 (2014).
[35] C. Li, G. Lefkidis*, and W. Hübner, Electronic theory of ultrafast spin dynamics in NiO, Journal of Nanomaterials & Molecular Nanotechnology 3(4), ** (2014).
[36] C. Li*, S. Zhang, W. Jin, G. Lefkidis, and W. Hübner, Λ-process-based spin manipulation in magnetic endohedral fullerenes, IEEE Trans. Magn. 49, 3195 (2013).
[37] C. Li*, S. Zhang, W. Jin, H. Xiang, G. Lefkidis, and W. Hübner, Coherent ultrafast spin-switching Λ processes in chainlike nanostructures with two identical magnetic centers, J. Magn. Magn. Mater. 324, 4024 (2012).
[38] C. Li*, S. Zhang, W. Jin, G. Lefkidis, and W. Hübner, Laser-induced ultrafast spin transfer in linear magnetic molecular ions, Acta Phys. Sin. 61, 177502 (2012). [in Chinese]
[39] C. Li*, W. Jin, H. Xiang, G. Lefkidis, and W. Hübner, Theory of laser-induced ultrafast magneto-optic spin flip and transfer in charged two-magnetic-center molecular ions: Role of bridging atoms, Phys. Rev. B 84, 054415 (2011).
[40] C. Li*, F. Yang, G. Lefkidis, and W. Hübner, Laser-induced ultrafast spin dynamics research on magnetic nanostructures, Acta Phys. Sin. 60, 017802 (2011). [in Chinese]
[41] G. Lefkidis*, C. Li, G. Pal, M. Blug, H. Kelm, H.-J. Krüger, and W. Hübner, Ab initio theory for ultrafast magnetic local spin flip on the newly synthesized homodinuclear complex [NiII2(L-N4Me2)(emb)], J. Phys. Chem. A 115, 1774 (2011).
[42] L. Kou, Y. Zhang, C. Li, W. Guo*, and C. Chen, Local-strain-induced charge carrier separation and electronic structure modulation in zigzag ZnO nanotubes: Role of built-in polarization electric field, J. Phys. Chem. C 115, 2381 (2011).
[43] L. Kou, C. Li, Z. Zhang, and W. Guo*, Tuning magnetism in zigzag ZnO nanoribbons by transverse electric fields, ACS Nano 4, 2124 (2010).
[44] L. Kou, C. Li, Z. Zhang, C. Chen, and W. Guo*, Charge carrier separation induced by intrinsic surface strain in pristine ZnO nanowires, Appl. Phys. Lett. 97, 053104 (2010).
[45] L. Kou, C. Li, Z. Zhang, and W. Guo*, Electric-field- and hydrogen-passivation-induced band modulations in armchair ZnO nanoribbons, J. Phys. Chem. C 114, 1326 (2010).
[46] C. Li*, G. Lefkidis, and W. Hübner, First-principles calculation of monitoring spin states of small magnetic nanostructures with IR spectrum of CO, J. Phys.: Conference Series200, 042014 (2010).
[47] C. Li*, F. Yang, and W. Guo, Strain-induced modulations of electro-optic and nonlinear Optical properties of ZnO: a first-principles study, Appl. Mech. Mater. 29-32, 1803 (2010).
[48] G. Lefkidis*, C. Li, T. Hartenstein, and W. Hübner, Local spin flip in two- and three-magnetic-center structures: a first-principles approach, J. Phys.: Conference Series200, 042011 (2010).
[49] C. Li*, T. Hartenstein, G. Lefkidis, and W. Hübner, First-principles calculation of the ultrafast spin manipulation of two-center metallic clusters with a CO molecule attached to one center as an infrared marker, Phys. Rev. B 79, 180413(R) (2009).
[50] Y. Liang*, C. Li, W. Guo, and W. Zhang, First-principles investigation of technetium carbides and nitrides, Phys. Rev. B 79, 024111 (2009).
[51] T. Hartenstein, C. Li*, G. Lefkidis, and W. Hübner, Local light-induced spin manipulation in two magnetic center metallic chains, J. Phys. D: Appl. Phys. 41, 164006 (2008).
[52] Y. Dai, W. Guo*, C. Li, and C. Tang, Ultrahigh frequency longitudinal oscillators from single-walled carbon nanotubes, J. Comput. Theor. Nanos. 5, 1372 (2008).
[53] C. Li*, G. Lefkidis, and W. Hübner, Electronic theory of ultrafast spin dynamics (project summary), Cond. Mat. arXiv:0811.4042(2008).
[54] L. Kou, W. Guo*, and C. Li, Piezoelectricity of ZnO and its nanostructures, IEEE Conference Proceedings of Piezoelectricity, Acoustic Waves, and Device Applications, 354-359, (SPAWDA 2008).
[55] C. Li, W. Guo*, Y. Kong, and H. Gao, First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures, Phys. Rev. B 76, 035322 (2007).
[56] C. Li, W. Guo*, Y. Kong, and H. Gao, First-principles study on ZnO nanoclusters with hexagonal prism structures, Appl. Phys. Lett. 90, 223102 (2007).
[57] C. Li, W. Guo*, Y. Kong, and H. Gao, Size-dependent piezoelectricity in zinc oxide nanofilms from first-principle calculations, Appl. Phys. Lett. 90, 033108 (2007).
[58] C. Li and W. Guo*, Fusion analyses of lifecycle safety and damage tolerance for cracked structures, Int. J. Fatigue 27, 429 (2005).
[59] C. Li and W. Guo*, Continuum mechanics simulation of post-buckling of single-walled nanotubes, Int. J. Nonlin. Sci. Num. 4, 387 (2003).
邀请报告和会议口头报告 (Invited talks and Oral presentations):
1. Strain modulation on the laser-induced ultrafast magneto-optic dynamics on carbon nanostructures, 18th U.S. National Congress for Theoretical and Applied Mechanics, Chicago, USA (June 6, 2018).
2. Strain-modulated ultrafast magneto-optic dynamics on endohedral fullerenes, 3rd International Symposium on Frontiers in Applied Mechanics 2016, Melbourne, Australia (December 3, 2016).
3. Strain-modulated ultrafast magneto-optic dynamics on Metallofullerenes, Queensland University of Technology, Brisbane, Australia (November 28, 2016).
4. Mechanical modulation on the ultrafast spin dynamics behavior of metallofullerenes, TU Kaiserslautern, Germany (June 9, 2016).
5. Ab initio investigation of the laser-induced ultrafast spin dynamics in magnetic nanostructures, BCCMS, University of Bremen, Germany (July 8, 2013).
6. Λ-process-based spin manipulation in magnetic endohedral fullerenes, 12th Joint MMM/Intermag Conference, Chicago, Illinois, United States (January 2013).
7. Ab initio investigation of ultrafast spin-manipulation: Λ processes in charged two-magnetic-center nanostructures with bridging atoms, APS March Meeting, Dallas, Texas, United States (March 2011).
8. investigation of ultrafast spin manipulation in two-magnetic-center nanostructures via Λ process, TU Kaiserslautern, Germany (June 2010).




荣誉获奖 Awards Information
陕西省高校科学技术二等奖(排名第一)(2017)
西工大“师德标兵”称号(2014)
西工大“先进工作者”称号(2013)
西工大优秀研究生导师奖(2012)
西工大优秀青年教师奖(2011)



English Version


相关话题/西北工业大学 力学