删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt

本站小编 Free考研考试/2022-02-11

Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction
Tan, Wenqiang1,2; Zhang, Jingjing1,2; Mi, Yingqi1,2,3; Dong, Fang1,2; Li, Qing1,2; Guo, Zhanyong1,2,3
发表期刊INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
ISSN0141-8130
2020-12-15
卷号165页码:1765-1772
关键词ChitosanAzide-alkyne click reactionTriphenylphosphoniumAntifungal activity
DOI10.1016/j.ijbiomac.2020.10.019
通讯作者Guo, Zhanyong(zhanyongguo@hotmail.com)
英文摘要As one of the most promising biopolymers for a variety of potential applications, chitosan has attractedmuch attention because of its unique biological, chemical, and physical properties. The functionalization of chitosan has been adopted to synthesize novel chitosan derivatives with improved water-solubility and excellent biological activities. In this paper, chitosanwas functionalized with a triphenylphosphoniumgroup by means of the copper (I) catalyzed azide-alkyne "click" reaction and has been investigated as potential polymer for agricultural antifungal biomaterial. The influence of chemical modification on the structural characteristics and water-solubility of chitosanwas investigated by FTIR spectroscopy, H-1 NMRspectroscopy, elemental analysis, and UV-vis spectrum. Furthermore, the antifungal property of target chitosan derivative against four plant threatening fungal pathogens was evaluated and in vitro investigation demonstrated that triphenylphosphoniumsalt incorporated chitosan backbone had excellent antifungal property compared with chitosan and intermediate chitosan derivative. Notably, target chitosan derivative displayed relatively strongest antifungal effect with over 80% inhibitory index against Botrytis cinerea at 1.0 mg/mL. The results of a detailed antifungal study indicated that cationic chitosan derivative bearing 1,2,3-triazole and triphenylphosphonium moieties provided a promising platform for preparation of novel cationic antifungal biomaterials in the field of agriculture. (C) 2020 Elsevier B.V. All rights reserved.
资助机构Youth Innovation Promotion Association CAS; Natural Science Foundation of Shandong Province of China; National Key Research and Development Program of China; Natural Science Foundation of Shandong Province Science and Technology Development Plan
收录类别SCI
语种英语
关键词[WOS]ANTIMICROBIAL ACTIVITY; QUATERNARY AMMONIUM; PHOSPHONIUM; ANTIOXIDANT; CHEMISTRY
研究领域[WOS]Biochemistry & Molecular Biology; Chemistry; Polymer Science
WOS记录号WOS:000600773500016
引用统计被引频次:5[WOS][WOS记录][WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/26156
专题海岸带生物学与生物资源利用重点实验室_海岸带生物资源高效利用研究与发展中心
海岸带生物学与生物资源利用重点实验室_海岸带生物学与生物资源保护实验室
中科院海岸带环境过程与生态修复重点实验室_海岸带环境过程实验室

通讯作者Guo, Zhanyong作者单位1.Chinese Acad Sci, Res & Dev Ctr Efficient Utilizat Coastal Bioresou, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Megasci, 7 Nanhai Rd, Qingdao 266071, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China

推荐引用方式
GB/T 7714Tan, Wenqiang,Zhang, Jingjing,Mi, Yingqi,et al. Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,2020,165:1765-1772.
APATan, Wenqiang,Zhang, Jingjing,Mi, Yingqi,Dong, Fang,Li, Qing,&Guo, Zhanyong.(2020).Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction.INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,165,1765-1772.
MLATan, Wenqiang,et al."Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction".INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 165(2020):1765-1772.


PDF全文下载地址:

点我下载PDF
相关话题/海岸 生物学 过程 环境 实验室