删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Mechanisms of mobility and retention of nano-TiO2 in acidic porous media in the presence of humus ac

本站小编 Free考研考试/2022-02-11

Mechanisms of mobility and retention of nano-TiO2 in acidic porous media in the presence of humus acids.
其他题名腐殖酸作用下酸性多孔介质中纳米TiO2的迁移与滞留机制
Zhang, Rui-Chang1,3; Zhang, Hai-Bo2; Tu, Chen2; Luo, Yong-Ming3
发表期刊Zhongguo Huanjing Kexue/China Environmental Science
ISSN1000-6923
2018-09-20
卷号38期号:9页码:3542-3551
关键词Convergence of numerical methodsNanoparticlesOrganic acidsOxidesPorous materialsQuartzSodium chlorideSoilsTitanium dioxide
产权排序(1) Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang; 471023, China; (2) Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai; 264003, China; (3) Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing; 210008, China
作者部门海岸带信息集成与综合管理实验室
英文摘要The mechanisms of mobility and retention of titanium dioxide nanoparticles (nTiO2) in well-defined porous media composed of clean quartz sand in the presence of fulvic acid (FA) and humic acid (HA) were studied under acidic conditions. nTiO2 were immobile in the porous media in the absence of FA and HA at pH 4.0. FA and HA could be adsorbed onto the surface of nTiO2, change the electrokinetic properties of nTiO2, and facilitate the transport of nTiO2. The elution of nTiO2 increased from 0.01 and 0.88 to 0.91 and 0.94 with the increase of FA and HA from 1mg/L to 10mg/L respectively. Compared to FA, more HA was adsorbed onto nTiO2, and thus the facilitated effect of HA on transport of nTiO2 was stronger. Ions inhibited the mobility of nTiO2, and the effect of CaCl2 was greater than that of NaCl in same concentration. The mobility of nTiO2 was better in the presence of HA than FA. In addition, 7%~56% nTiO2 was deposited in the secondary energy minimum well in the presence of HA, higher than 4%~17% in the presence of FA, which could be easily released when the environmental conditions changed. High energy barriers between nTiO2 and quartz promoted the mobility of nTiO2, while a combination of the secondary minimum energy, straining, diffusion and gravitational deposition were involved in the retention of nTiO2. ? 2018, Editorial Board of China Environmental Science. All right reserved.
文章类型article
收录类别EI
语种中文
研究领域[WOS]Minerals
EI主题词Convergence of numerical methods; Nanoparticles; Organic acids; Oxides; Porous materials; Quartz; Sodium chloride; Soils; Titanium dioxide
EI入藏号20184506032696
文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/25216
专题中科院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
中科院海岸带环境过程与生态修复重点实验室_污染过程与控制实验室
中科院海岸带环境过程与生态修复重点实验室

作者单位1.Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang; 471023, China;
2.Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai; 264003, China;
3.Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing; 210008, China

推荐引用方式
GB/T 7714Zhang, Rui-Chang,Zhang, Hai-Bo,Tu, Chen,et al. Mechanisms of mobility and retention of nano-TiO2 in acidic porous media in the presence of humus acids.[J]. Zhongguo Huanjing Kexue/China Environmental Science,2018,38(9):3542-3551.
APAZhang, Rui-Chang,Zhang, Hai-Bo,Tu, Chen,&Luo, Yong-Ming.(2018).Mechanisms of mobility and retention of nano-TiO2 in acidic porous media in the presence of humus acids..Zhongguo Huanjing Kexue/China Environmental Science,38(9),3542-3551.
MLAZhang, Rui-Chang,et al."Mechanisms of mobility and retention of nano-TiO2 in acidic porous media in the presence of humus acids.".Zhongguo Huanjing Kexue/China Environmental Science 38.9(2018):3542-3551.


PDF全文下载地址:

点我下载PDF
相关话题/海岸 过程 环境 生态 实验室