删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于MODIS 数据的2016年黄海绿潮灾害动态监测研究

本站小编 Free考研考试/2022-02-11

基于MODIS 数据的2016年黄海绿潮灾害动态监测研究
其他题名Spatial and temporal distribution characteristic of green tides in the Yellow Sea in 2016 based on MODIS data
徐福祥1,2; 高志强1; 郑翔宇1,2; 宁吉才1; 宋德彬1,2
发表期刊海洋科学
ISSN1000-3096
2017-05-15
卷号41期号:5页码:80-84
关键词MODISGF-1MODISGreen TidesGF-1error analysisdynamic monitoring绿潮验证动态监测
DOIDOI: 10.11759/hykx20160922003
产权排序(1) 中国科学院烟台海岸带研究所
; (2) 中国科学院大学
作者部门海岸带信息集成与综合管理实验室
英文摘要This paper analyses the errors of the Green Tides monitoring results from MODIS data with high resolution GF-1 WFV satellite images based on the assumption that pixels of GF-1 WFV data are pure. On this basis, continuous and dynamic monitoring of the Green Tides of the Yellow Sea in 2016 were performed. The results show that the total error of the monitoring results using MODIS data is higher than 50%; the Green Tide moved northwards first, then moved in the northeast direction along the coastline of Shandong Peninsula, and finally was stranded in the sea areas near Qingdao and Weihai in 2016; Green Tides lasted around 80 days at this time, and showed a regularity similar to that of previous years, that is, it first appeared, developed and exploded, then was disposed, and finally disappeared. In detail, it appeared on May 12, it developed in mid- to late-May, at which period the main body of the Green Tide was distributed in muddy water in Subei Shoal, and began to explode in late May and early June after entering clear water. Based on these aspects, the macroalgal blooms caused by Ulva prolifera in 2016 were very serious and had huge impacts on the coastal aquaculture and tourism industry of Shandong Province.
中文摘要本研究利用高分辨率的GF-1卫星影像对MODIS数据绿潮监测的精度进行验证,并在此基础上利用MODIS数据对2016年黄海绿潮过程进行连续动态监测,结果表明:相较于GF-1卫星影像, MODIS数据对绿潮的监测误差高于50%; 2016年黄海绿潮移动路径总体呈先向北,然后沿山东半岛海岸线向东北方向移动,并最终停滞于青岛、威海附近海域;此次绿潮持续时间为80天左右,并呈现出与往年类似的出现发展暴发治理消亡的规律;其中出现的时间为5月12日, 发展阶段时间为5月中下旬,此时绿潮主体分布于苏北浑水区,适宜前置打捞治理,当5月底6月初绿潮进入清水区之后才开始进入暴发阶段,本年度绿潮灾害暴发规模较大,对山东沿海水产养殖业及旅游业影响严重。本研究成果对于绿潮预警和防控具有科学和实际意义。
文章类型Article
收录类别CSCD
语种中文
关键词[WOS]Environmental Sciences & Ecology
研究领域[WOS]Environmental Sciences & Ecology; 环境科学与生态学
CSCD记录号CSCD:6058832
引用统计

文献类型期刊论文
条目标识符http://ir.yic.ac.cnhttp://ir.yic.ac.cn/handle/133337/24414
专题中科院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
中科院海岸带环境过程与生态修复重点实验室

通讯作者高志强作者单位1.中国科学院烟台海岸带研究所;
2.中国科学院大学

推荐引用方式
GB/T 7714徐福祥,高志强,郑翔宇,等. 基于MODIS 数据的2016年黄海绿潮灾害动态监测研究[J]. 海洋科学,2017,41(5):80-84.
APA徐福祥,高志强,郑翔宇,宁吉才,&宋德彬.(2017).基于MODIS 数据的2016年黄海绿潮灾害动态监测研究.海洋科学,41(5),80-84.
MLA徐福祥,et al."基于MODIS 数据的2016年黄海绿潮灾害动态监测研究".海洋科学 41.5(2017):80-84.


PDF全文下载地址:

点我下载PDF
相关话题/数据 海洋科学 海岸 过程 中国科学院