删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国石油大学华东理学院导师教师师资介绍简介-蒋达清

本站小编 Free考研考试/2020-11-25


一、自然情况
姓名: 蒋达清 性别: 男 民族:汉
出生年月日: 1965年2月25日湖南省衡阳市
单位: 中国石油大学(华东)理学院, 邮编: 266580
信箱: jiangdq067@nenu.edu.cn
二、学习简历
1984.9---1988.7 吉林大学数学系 理学学士学位 数理统计专业
1988.9---1991.7 吉林大学数学所 硕士学位 偏微分方程专业
2003.9---2006.6 东北师大数学与统计学院 博士学位 概率论与数理统计专业
三、工作简历
1991.7---1994.7 东北师大数学与统计学院 助教
1994.7---1998.12 东北师大数学与统计学院 讲师
1998.12---2000.9 东北师大数学与统计学院 副教授
2000.9—至今 东北师大数学与统计学院 教授
2003.7—2013.7 东北师大数学与统计学院 教授委员会委员
2006.7—至今 东北师大数学与统计学院 博士生导师
2014.3—至今 中国石油大学(华东)理学院 教授
四、科研项目,获奖情况
主持:
1.《随机微分方程中的参数估计问题》(NO: **)(2006.1-2008.12.)国家自然科学基金项目,18万元
2.《随机微分方程中的参数估计与假设检验问题》(NO: 109051)(2009.1-2011.12)教育部科学技术研究重点项目,10万元
3.《随机微分方程中的参数估计与假设检验问题》(NO: 200918)(2009.1-2013.12)高等学校全国优秀博士学位论文作者专项资金,48万元
4. 《随机微分方程中的参数估计与假设检验问题》(NO: **)(2010.1-2012.12)国家自然科学基金项目,26万元
5. 《随机生物数学模型和传染病模型的渐近行为》(NO: **)(2014.1-2017.12)国家自然科学基金项目,56万元
参加:
1. 《数据驱动的应用统计方法研究》(2011-01—2013-12),教育部团队项目, 300万元
2. 《随机微分方程中的参数估计问题》教育部博士点基金, 2008.01-2010.12,6万元,
史宁中 , 蒋达清 , 潘家齐 , 范猛 , 李晓月 , 刘振文 ,于佳佳 , 张继民 。
3.《Lienard系统拓扑分类》(No: **)国家自然科学青年基金,2008.01-2010.12
4.《可积系统的时滞扰动》(NO: **) 国家自然科学基金项目,2002-01—2004-12
5.《时滞微分方程所确定的动力系统的研究》(NO: **) 国家自然科学基金项目1999-01—2001-12
获奖项目名称:
1. 博士论文“随机微分方程中的参数估计与假设检验问题”被评为2008年全国百篇优秀博士论文
2. 微分方程边值问题定性理论及其应用研究,2007年7月,广东省科学技术进步奖,三等奖,翁佩萱,蒋达清,徐志庭
3.被《2014全球高被引科学家》(Highly cited Researchers 2014)名单收录, 中国入选该学科领域的17位科学家之一
主要著作:
1.魏俊杰(编),潘家齐(编),蒋达清(编)常微分方程[教材]高等教育出版社2002-07-01
五、主要研究方向
目前,已有110篇论文发表在SCI检索杂志上,在《Automatica》SCI二区,《J. Differential Equations》SCI二区, 《Math. Model and Method in Appl. Science》SCI SCI二区,《J. Math. Anal. Appl.》SCI二区,《Nonlinear Analysis》SCI一区,《Nonlinear Analysis Real World Appl. 》SCI一区, 《Comput. Math. Appl.》SCI一区等国际著名刊物上发表。探讨由随机微分方程表示的随机生物数学模型和传染病模型。
2010年荣获第五届“秦元勋数学奖”。被《2014全球高被引科学家》(Highly cited Researchers 2014)名单收录,入选数学学科领域,成为全球入选该学科领域的99位科学家之一、中国入选该学科领域的17位科学家之一。本次公布的全球高被引科学家名单是由汤森路透采用最新数据和先进算法,通过对21个大学科领域2002年至2012年被SCI收录的自然和社会科学领域论文进行分析评估,并将所属领域同一年度他引频次在前1%的论文进行排名统计后得出的。入选高被引科学家名单,意味着该****在其所研究领域具有世界级影响力,其科研成果为该领域发展作出了重大贡献。全球入选的科学家共有3215人次,中国(含港澳)共有134人入选,仅次于美国(1702人)、英国(304人)和德国(163人)。
六、 教学工作
主要讲授课程:
本 科:概率论与数理统计, 常微分方程等 .
研究生:非线性泛函分析,随机微分方程,微分方程中非线性方法等
指导研究生情况(博士、硕士):指导44名硕士研究生, 14名博士研究生,其中40名硕士研究生已毕业, 5名博士研究生已毕业。
七. 社会学术兼职
美国《Mathematical Review》评论员, 吉林省工业应用数学学会、运筹学学会常务理事。
曾为《J. Math. Anal. Appl.》、《Nonlinear Analysis》、《J. Comput. Appl. Math.》、《 Computer and Math. with Appl. 》、《Appl. Math. Letters》、 等杂志一次或多次审稿。SCI检索杂志 Journal of Appl. Math 编缉.
八、 科研成果(按年度排列), 通讯作者*
2014
[1] Yuguo Lin and Daqing Jiang*, Long-time behaviour of a stochastic SIR model, Appl.Math.Comput.,236(2014),1—9. SCI二区
[2] Yuguo Lin and Daqing Jiang*, Stationary distribution of a stochastic SIS
epidemic model with vaccination, Physica A 394(2014), 187-197. SCI3区
[3]Ying Yang · Yanan Zhao · Daqing Jiang*, The dynamics of the stochastic multi-molecule biochemical reaction model, J Math Chem 52(2014) 1477–1495. SCI3区
[4]Haihong Li, Daqing Jiang*, Fuzhong Cong, and Haixia Li, Persistence
and nonpersistence of a predator prey system with stochasticperturbation,
Abstract and Applied Analysis,Volume 2014, Article ID 720283, 10 pages SCI二区
[5] Li Zu, Daqing Jiang,and Donal O’Regan, Stochastic Permanence, Stationary Distribution and Extinction of a Single-Species Nonlinear Diffusion System with Random Perturbation, Abstract and Applied Analysis,Volume 2014, Article ID 320460, 14 pages. SCI二区
[6]Chunyian Ji and Daqing Jiang*, The threshold of a stochastic SIRS epidemic
model with saturated incidence, Appl. Math. Model. In Press SCI二区
[7] Qixing Han , Daqing Jiang* , Chunyan Ji, Analysis of a delayed stochastic predator-prey model in a polluted environment., Applied Mathematical Modelling 38 (2014) 3067–3080 .SCI二区
[8]Yanan Zhao and Daqing Jiang*,The threshold of a stochastic SIRS epidemic model with saturated incidence , Applied Mathematics Letters 34 (2014) 90–93. SCI二区
[9]Yanan Zhao and Daqing Jiang*,The threshold of a stochastic SIS epidemic model with
Vaccination, Applied Mathematics and Computation 243 (2014) 718–727. SCI二区
[10] The long time behavior of a predator–prey model with disease in the prey by stochastic perturbation,Applied Mathematics and Computation 245 (2014) 305–320. SCI二区
2013
[1] Yuguo Lin and Daqing Jiang*, Long-time beheavior of a pertuebed
SIR model by white noise,DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES B,Volume 18, Number 7, September 2013, 1873—1887. SCI3区
[2]Yanan Zhao and Daqing Jiang*, Dynamics of stochastically perturbed SIS epidemic model with vaccination,Abstract and Applied Analysis,
Volume 2013, Article ID 517439, 12 pages.。SCI二区
[3]Yuguo Lin and Daqing Jiang*,Dynamics of a multigroup SIR epidemic model with nonlinear incidence and stochastic perturbation,Abstract and Applied Analysis, Volume 2013, Article ID 917389, 12 pages. SCI二区
[4]Yanan Zhao, Daqing Jiang*, Donal O’Regan,The extinction and persistence of the stochastic SIS epidemicmodel with vaccination,Physica A 392 (2013) 4916–4927. SCI 3区
[5] Peiyan Xia, Xiaokun Zheng and Daqing Jiang*,Persistence and nonpersistence of a nonautonomous stochastic mutualism system,Abstract and Applied Analysis, Volume 2013, Article ID 256249, 13 pages。SCI二区
[6]Chunyan Ji*, Daqing Jiang, Analysis of a predator–prey model with disease in the prey,International Journal of Biomathematics, Vol. 6, No. 3 (2013) ** (21 pages). SCI4区
2012
[1] Chunyan Ji, Daqing Jiang*, Qingshan Yang, Ningzhong Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica 48 (2012) 121–131. SCI二区
[2]Hong Liu , Qingshan Yang*, Daqing Jiang, The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences, Automatica 48 (2012) 820–825. SCI二区
[3] Chunyan Ji, Daqing Jiang*, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete and Continuous Dynamical Systems, Volume 32, Number 3, March 2012, pp. 867-889. SCI二区
[4] Daqing Jiang, Chunyan Ji*, Xiaoyue Li, Donal O'Regan, Analysis of autonomous Lotka–Volterra competition systems with random perturbation, J. Math. Anal. Appl. 390 (2012) 582–595。SCI二区
[5] Qingshan Yang*, Daqing Jiang, Ningzhong Shi, Chunyan Ji ,The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl. 388 (2012) 248–271. SCI二区
[6] Chengjun Yuan, Daqing Jiang* , Donal O’Regan , Ravi P. Agarwal, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer ..Simula..17 (2012) 2501–2516. SCI一区
[7]Chunyan Ji*, Daqing Jiang, Dyanmics of an HIV-1 Infection model with cell-mediated immune rexponse and stochastic perturbation, Interational Journal of Biomathematics, Vol. 5, No. 5 (September 2012) ** (25 pages) SCI4区。
[8] Zhenwen Liu, Ningzhong Shi, Daqing Jiang* and Chunyan Ji, The asymptotic behavior of a stochastic predator-prey system with Holling II functional response, Abstract and Applied Analysis,Volume 2012, Article ID 801812, 14 pages。SCI二区
[9] Li Zu, Daqing Jiang* and Fuquan Jiang, Existence, stationary distribution, and extinction of predator-prey system of prey dispersal with stochastic perturbation, Abstract and Applied Analysis,Volume 2012, Article ID 547152, 24 pages. SCI二区
[10] Chunyan Ji, Daqing Jiang*, Ningzhong Shi, The behavior of an SIR epidemic model with stochastic perturbation, Stochastic Analysis and Applications, 30: 755–773, 2012. SCI4区
[11] Chunyan Ji*, Daqing Jiang, Ningzhong Shi, Two-group SIR epidemic model with stochastic perturbation, Acta Mathematica Sinica, English Series,Dec., 2012, Vol. 28, No. 12, pp. 2545–2560. SCI4区
2011
[1] Xiaoyue Li*, Alison Gray, Daqing Jiang , Xuerong Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl. 376 (2011) 11–28. SCI二区
[2] Chunyan Ji, Daqing Jiang* , Ningzhong Shi,A note on a predator–prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 377 (2011) 435–440. SCI二区
[3] Chunyan Ji* , Daqing Jiang, Dynamics of a stochastic density dependent predator–prey system with Beddington–DeAngelis functional response, J. Math. Anal. Appl. 381 (2011) 441–453. SCI二区
[4] Qingshan Yang* , Daqing Jiang, A note on asymptotic behaviors of stochastic population model with Allee effect, Applied Mathematical Modelling 35 (2011) 4611–4619. SCI二区
[5] Daqing Jiang *, Jiajia Yua, Chunyan Ji , Ningzhong Shi, Asymptotic behavior of global positive solution to a stochastic SIR model, Mathematical and Computer Modelling 54 (2011) 221–232. SCI二区
[6] Chunyan Ji, Daqing Jiang* , Ningzhong Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A 390 (2011) 1747–1762. SCI3区
[7] Chunyan Ji, Daqing Jiang*, Xiaoyue Li , Qualitative analysis of a stochastic ratio-dependent predator–prey system, Journal of Computational and Applied Mathematics 235 (2011) 1326–1341. SCI3区
[8] Xu Xiaojie*, Jiang Daqing, Yuan Chengjun, Multiple positive solutions to singular positone and semipositone Dirichlet-type boundary value problems of nonlinear fractional differential equations,Nonlinear Analysis, 74 , 5685–5696, 2011。SCI一区

相关话题/中国石油大学 理学院