删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

山东大学材料科学与工程学院导师教师师资介绍简介-白玉俊

本站小编 Free考研考试/2020-11-22


姓 名
白玉俊
出生年月
1967.12

性 别

学 历
博士

专业技术职务
教授
博导聘任时间
2015.07

学术团体兼职
Energy & Environmental Science、Nature communications、Journal of Materials Chemistry、Chemical Communications、Carbon、Nanoscale、中国科学等国内外期刊审稿人。国家“863”项目、国家自然科学基金、山东省科技发展计划项目、内蒙古自治区自然科学基金、河北省自然科学基金、国家科技奖等评审专家。

1. 学习和工作经历

2003/11- 至今 山东大学材料学院,教授。
2002/11-2003/10 山东科技大学机械系,教授。
2000/12-2003/06 山东大学晶体材料国家重点实验室,博士后。
2000/11-2002/10 山东科技大学机械系,副教授。
1996/10-2000/10 现山东科技大学机械系,讲师。
1995/07-1996/09 山东科技大学机械系,助教。
1989/07-1992/09 洛阳407厂测试中心工作,助理工程师。
1997/09-2000/07 山东大学, 获材料学博士学位。
1992/09-1995/07 山东大学, 获材料学硕士学位。
1985/09-1989/07 哈尔滨工程大学, 获材料学学士学位。

2. 研究领域介绍

(1)先进功能材料的设计、制备、性能及应用研究;
(2)高性能锂离子电池电极材料的设计、加工、性能及应用研究;
(3)超级电容器电极材料设计、加工、性能及应用研究;
(4)先进陶瓷材料的设计、制备、性能及应用研究。

3. 取得科研成果情况

在Advanced Energy Materials、Journal of Materials Chemistry A、ACS Applied Materials & Interfaces、Journal of Power Sources、Carbon等杂志发表SCI论文130余篇,被Materials Science & Engineering R-Reports、Progress in Materials Science等期刊他引2000余次。获授权国家发明专利20余项。
主要论文:
1.Li2ZnTi3O8/C anode with high initial Coulombic efficiency, long cyclic life and outstanding rate properties enabled by fulvic acid, Carbon 163 (2020) 297-307。
2.On the capacity degradation of Li4Ti5O12 during long-term cycling in terms of composition and structure. Dalton Transactions, 2020, DOI: 10.1039/D0DT01719A
3.Optimizing the cycling life and high-rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid. Journal of Materials Science. 2020, 10.1007/s10853-020-04980-1
4.Synergistic modification of commercial TiO2 by combined carbon sources of citric acid and sodium carboxymethyl cellulose. New J. Chem., 2020, 44,1571
5.Co-Modi?cation of commercial TiO2 anode by combining a solid electrolyte with pitch-derived carbon to boost cyclability and rate capabilities. Nanoscale Adv., 2020, 2, 2531-2539.
6.Sodium carboxymethyl cellulose as an effective modifier for boosting the electrochemical performance of commercial TiO2, Energy Technology 2019
7.A uniform few-layered carbon coating derived from self-assembled carboxylate monolayers capable of promoting the rate properties and durability of commercial TiO2. RSC Adv., 2019, 9, 36334.
8.A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials. 2019, **.
9.Optimizing the supercapacitive performance and cyclability of Ni(OH)2 by simply compositing with CuO concomitant with mutual doping. ChemElectroChem 10.1002/celc..
10.Li2ZnTi3O8 Coated with Uniform Lithium Magnesium Silicate Layer Revealing Enhanced Rate Capability as Anode Material for Li-Ion Battery. Electrochimica Acta 2019, 315, 24-32.
11.Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate. Electrochimica Acta 2019,295, 891-899.
12.Fabricating Mn3O4/Ni(OH)2 nanocomposite by water-boiling treatment to utilize in asymmetric supercapacitors as electrode material. ACS Sustainable Chemistry & Engineering. 2018, 6, 15688-15696.
13.Combined Modification of Dual-Phase Li4Ti5O12-TiO2 by Lithium Zirconates to Optimize Rate Capabilities and Cyclability. ACS Applied Materials & Interfaces. 2018, 10, 24910-24919.
14.Li1.3Al0.3Ti1.7(PO4)3 Behaving as a Fast Ionic Conductor and Bridge to Boost the Electrochemical Performance of Li4Ti5O12. ACS Sustainable Chemistry & engineering 2018, 6, 7273-7282.
15.Combined Modification by LiAl11O17 and NaAl11O17 to enhance the electrochemical Performance of Li4Ti5O12. Applied Surface Science 2018, 447, 279–286.
16.Boosted Electrochemical Performance of Li2ZnTi3O8 Enabled by Ion-Conductive Li2ZrO3 Concomitant with Superficial Zr-doping. Journal of Power Sources 2018, 379, 270-277.
17.Boosting the cyclability of commercial TiO2 anode by introducing appropriate amount of Ti9O17 during coating carbon. Journal of Alloys and Compounds 2018, 762, 598-604.
18.Ionic Conductor of Li2SiO3 as an Effective Dual-Functional Modifier to Optimize the Electrochemical Performance of Li4Ti5O12 for High-Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces,2017,9(2), 1426–1436.
19.Li4Ti5O12 Composited with Li2ZrO3 Revealing Simultaneously Meliorated Ionic and Electronic Conductivities as High Performance Anode Materials for Li-ion Batteries. Journal of Power Sources. 2017, 354, 16-25.
20.Improving the Electrochemical Performance of Li2ZnTi3O8 by Surface KCl Modification. ACS Sustainable Chemistry & Engineering. 2017, 5, 6099-6106.
21.Enhancing the electrochemical performance of commercial TiO2 by eliminating sulfate radicals and coating carbon. Electrochimica Acta 2017, 245, 186–192.
22.Efficient mass-fabrication of amorphous mesoporous MnSiO3/C with high stability through simple water-boiling treatment and the Li-ion storage performance. New Journal of Chemistry. 2017, 41, 4295-4301.
23.Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries. Electrochimica Acta 2016, 222: 1562–1568.
24.Fabricating MnO/C composite utilizing pitch as soft carbon source for rechargeable Li-ion batteries. New Journal of Chemistry. 2016,40, 9986-9992.
25.Manganese silicate drapes as a novel electrode material for supercapacitors. RSC Adv., 2016, 6, 105771–105779.
26.Al2O3-modi?ed Ti–Mn–O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Adv., 2016, 6, 40953–40961.
27.One-step fabrication of Fe-Si-O/carbon nanotube composite anode material with excellent high-rate long-term cycling stability. Journal of Alloys and Compounds 686 (2016) 318-325
28.Nitrogen-Doped Carbon-Coated Ti?Fe?O Nanocomposites with Enhanced Reversible Capacity and Rate Capability for High-Performance Lithium-Ion Batteries. RSC Advances, 2016, 6, 65266–65274
29.Improving the Li-ion storage performance of commercial TiO2 by coating with soft carbon derived from pitch. Electrochimica Acta. 2016, 212 , 155-161
30.One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance. Electrochimica Acta2016,187:389-396
31.Ti-Sn-O Composite Oxides Coated with N-doped Carbon Exhibiting Enhanced Lithium Storage Performance. New J. Chem., , 2016, 40: 285-294.
32.Simple fabrication of TiO2/C nanocomposite with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta 2015, 169: 241–247
33.Carbon-coated manganese silicate exhibiting excellent rate performance and high-rate cycling stability for lithium-ion storage. Electrochimica Acta. 2015, 186: 572–578
34.Excellent performance of carbon-coated TiO2/Li4Ti5O12 composite with low Li/Ti ratio for Li-ion storage. RSC Advances, 2015,5, 93155 - 93161
35.Enhancing the comprehensive Electrochemical Performance by compositing intercalation/deintercalation-type of TiO2 with conversion-type of MnO. Journal of Alloys and Compounds 640 (2015) 15–22.
36.Simple Preparation of Carbon Nanofibers with Graphene Layers Perpendicular to the Length Direction and the Excellent Li-ion Storage Performance. ACS Applied Materials & Interfaces. 2015,7(9), pp 5107–5115.
37.Enhancing the Long-Term Cyclability and Rate Capability of Li4Ti5O12 by Simple Copper-Modification. Electrochimica Acta 155 (2015) 132–139.
38.Enhancing the reversible capacity and rate performance of anatase TiO2 by combined coating and compositing with N-doped carbon. Journal of Power Sources 2015, 273: 472-478.
39.Li-Ion Storage Performance of MnO Nanoparticles Coated with Nitrogen-Doped Carbon Derived from Different Carbon Sources. Electrochimica Acta 2014, 146: 249–256.
40.Thermal formation of porous Fe3O4/C microspheres and the lithium storage performance. Journal of Alloys and Compounds 2014, 597: 30–35.
41.Li-ion Storage Performance of Carbon-Coated Mn-Al-O Composite Oxides. J. Phys. Chem. C 2014, 118: 23559?23566.
42.Enhanced Electrochemical Performance of Zn-Doped Fe3O4 with Carbon Coating. Electrochimica Acta. 117 (2014) 230–238.
43.Batteries. ACS Applied Materials & Interfaces. 2013, 5, 9470?9477.
44.Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon. ACS Applied Materials & Interfaces. 2013, 5, 4209?4215.
45.Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance. Electrochimica Acta. 2013, 90, 119–127.
46.Large-scale preparation of hollow graphitic carbon nanospheres. Materials Chemistry and Physics 2013, 137: 904-909.
47.Yttrium–modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long–term cyclability and rate capabilities. Journal of Materials Chemistry A, 2013, 1 (1), 89 – 96.
48.Excellent long-term cycling stability of La–doped Li4Ti5O12 anode material at high current rates. Journal of Materials Chemistry, 2012, 22, 19054–19060.
49.Large-scale synthesis of hollow highly-graphitic carbon nanospheres by the reaction of AlCl3·6H2O with CaC2. Carbon.2012, 50:1871-1878.
50.Low Temperature Preparation of Hollow Carbon Nano-polyhedrons with Uniform Size, High Yield and Graphitization. MaterialsChemistryandPhysics. 2012, 134(2–3): 639–645.
51.Toughening and reinforcing zirconia ceramics by introducing boron nitride nanotubes. Materials Science & Engineering A. 2012, 546: 301–306.
52.In-situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties. Journal of Materials Chemistry. 2011, 21(35): 13581-13587.
53.Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-ion Batteries. The Journal of Physical Chemistry C 2011, 115, 8923–8927.
54.Template-Free Synthesis of Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Energy Materials. 2011, 1: 798–801. Synthesis of hollow carbon sphere/ZnO@C composite as a light-weight microwave absorber. Journal of Physics D: Applied Physics. 2011, 44, 265502。
55.One-Step preparation of Six-Armed Fe3O4 Dendrites with Carbon Coating applicable for Anode Material of Lithium-ion Battery. Materials Letters 2011, 65, 3157–3159.
56.Microwave absorption properties of TiN nanoparticles. Journal of alloys and compounds. 2011, 509: 10032-10035.
57.Fabrication of Alumina Ceramic Reinforced with Boron Nitride Nanotubes with Improved Mechanical Properties. Journal of the American Ceramic Society. 2011, 94(11): 3636–3640.
58.Microstructure and mechanical properties of alumina ceramics reinforced by boron nitride nanotubes. Journal of the European Ceramic Society 2011, 31: 2277–2284.
59.Thermal Shock Resistance Behavior of Alumina Ceramics Incorporated with Boron Nitride Nanotubes. Journal of the American Ceramic Society 2011, 94(8): 2304–2307.
60.Simple synthesis of mesoporous boron nitride with strong cathodoluminescence emission. Journal of Solid State Chemistry 2011, 184 (4) 859–862.
61.Rapid, Low temperature synthesis of β-SiC nanowires from Si and graphite. Journal of the American Ceramic Society. 2010, 93 (9) 2415–2418.
62.Low-Temperature Synthesis of Meshy Boron Nitride with a Large Surface Area. European Journal of Inorganic Chemistry. 2010, 2010(20): 3174–3178.
63.Facile synthesis of boron nitride coating on carbon nanotubes. Materials Chemistry and Physics, 2010, 122(1): 129-132.
64.Simple synthesis of hollow carbon spheres from glucose. Materials Letters. 2009, 63(29):2564–2566.
65.Large-scale synthesis of BN nanotubes using carbon nanotubes as template. Materials Letters. 2009, 63(15): 1299-1302.
66.Facile Synthesis of Si3N4 Nanocrystals Via an Organic–Inorganic Reaction Route. Journal of the American Ceramic Society. 2009, 92(2): 535-538.
67.Synthesis of Carbon Spheres via a Low-Temperature Metathesis Reaction. The Journal of Physical Chemistry C 2008, 112(32), 12134–12137.
68.Rapid synthesis of graphitic carbon nitride powders by metathesis reaction between CaCN2 and C2Cl6. Materials Chemistry and Physics. 2008, 112(3):1124-1128.
69.Carbon nanobelts synthesized via chemical metathesis route. Materials Letters,2007, 61(4-5): 1122-1124.
70.HRTEM Microstructures of PAN precursor fibers. Carbon. 2006, 44(9):1773-1778.
71.Rapid synthesis of Si3N4 dendritic crystals. Scripta Materialia. 2006, 54(3): 447–451.
72.One Step Convenient Synthesis of Crystalline β-Si3N4. Journal of Materials Chemistry. 2005, 15, 4832–4837.
73.Low temperature induced synthesis of TiN nanocrystals. Inorganic Chemistry. 2004, 43(12): 3558-3560.

授权发明专利:
1.一种硅酸镁锂包覆改性钛酸锌锂负极材料及其制备方法. ZL 20**
2.一种氯化钾改性钛酸锌锂负极材料的制备方法. ZL 0.2
3.一种复合锆酸锂改性双相钛酸锂/二氧化钛负极材料的制备技术. ZL 20**.
4.一种钼酸钠改性钛酸锌锂负极材料及其制备方法 ZL 0X.
5.一种硅酸锂改性钛酸锂负极材料及制备方法、应用。 ZL9.4。
6.一种钛酸锌锂/二氧化钛复合负极材料及其制备方法。ZL6.9.
7.一种钇改性的钛酸锂负极材料及其制备方法。ZL84.
8.一种石墨与过渡金属氧化物复合负极材料及其制备方法。ZL9X.
9.一种高稳定性非晶硅酸锰的制备方法。ZL 6.1
10.一种低温反应制备高石墨化空心纳米碳球的方法。ZL6.4.
11.氮化硼纳米管增强的氮化硅陶瓷及其制备方法。ZL8.1。
12.一种氮化硼纳米管增强增韧氧化锆陶瓷的方法。ZL8.3。
13.一种低温辅助反应诱发合成碳化硅或碳化硅纳米管的方法。ZL4.7。
14.一种低温反应制备多孔氮化钛的工艺。ZL7.8。
15.一种低温制备氮化硅粉体材料的方法。ZL0.0。
16.氮化硼纳米管增强的氧化铝陶瓷的制备方法。ZL0.9。
17.一种制备氮化硼包覆碳纳米管纳米线及氮化硼纳米管的方法。ZL1.5。
18.一种硅纳米管和纳米线的制备工艺。ZL6.6。
19.一种低温制备氮化硅粉体材料的方法。ZL3.0。
20.碳氮化钛三元化合物粉体材料的制备方法。ZL6.6。

主要获奖:
1.2019年度山东省优秀硕士学位论文指导教师。
2.2019年度山东大学优秀硕士学位论文指导教师。
3.2012年12月山东省高等学校优秀科研成果奖:Si-B-C-N系材料的低温制备及相关性能研究。自然科学类二等奖。
4.2010年度山东省优秀硕士学位论文指导教师。
5.2010年度山东大学优秀硕士学位论文指导教师。
6.2009年7月山东省研究生优秀科技创新成果奖指导教师。
7.2005年12月, 山东省高等学校优秀科研成果奖三等奖:无机材料超细粉体的制备及表征。
8.2002年10月,山东省高等学校优秀科研成果奖二等奖:CuZnAlMnNi形状记忆合金的转变行为。
9.2001年9月,山东省科技进步三等奖:铜基形状记忆合金的相变特性及组织结构的演化。
10.2001年12月,山东省第五批中青年学术骨干。


4. 承担科研项目情况

1. 2019.07-2022.06山东省自然科学基金(ZR2019MEM029):工业氧化钛基负极材料电化学性能的优化及相关机理研究。
2. 2019.5-2022.5软包锂电池负极材料性能优化技术研发(横向)。
3. 2018.5-2021.5锰酸锂正极材料性能优化技术研发(横向)。
4. 2016.1-2017.12山东省重点研发计划(2016GGX102031):硅酸锂改性钛酸锂负极材料的关键技术研究。
5. 2016.7-2018.12 山东省自然科学基金(ZR2016EMM18):离子导体硅酸锂改性Li2ZnTi3O8负极材料的电化学性能及改性机理研究。
6. 2015.11-2018.11钛酸锂负极材料的制备技术研发(横向)。
7. 2016.1-2020.12 国家基金重点项目(**):介孔/微孔复合材料的控制制备与储能应用。
8. 2015.7-2017.12,山东省自然科学基金(ZR2015EM016):铁基硅酸盐锂离子电池负极材料的制备及其电化学性能研究。
9. 2015.2-2018.3,锂离子电池负极材料性能测试(横向)。
10. 2014.10-2016.9,锂离子电池复合负极材料的制备技术研发(横向)。
11. 2014.4-2016.4,锂电池负极材料的研制(横向)。
12. 2013.12-2014.12,一种低温制备氮化硅粉体材料的方法(山东省)。
13. 2013.11-2014.10,高性能锂离子电池负极材料的研制(横向)。
14. 2013.9-2014.9,改性石墨负极材料的研制(横向)。
15. 2012.7-2013.7,高性能人造石墨负极材料的研制(横向)。
16. 2012.1-2014.12,山东大学自主创新基金(2012ZD004):多元氧化物锂离子电池负极材料的制备及电化学性能研究。
17. 2011.10-2013.9,晶体材料国家重点实验室2011年度开放课题(KF1105):改性碳材料的吸波性能研究。
18. 2011.1-2012.12,山东省科学技术发展计划项目(2011GGX10205)新型BNNTs/Si3N4复合材料的制备及其关键技术。
19. 2010.1-2012.12,国家自然科学基金项目(**):氮化硼纳米管大量制备、形成机理及其对氧化铝陶瓷的强韧化作用。
20. 2009.1—2010.12,山东省科学技术发展计划项目(2009GG**):碳纳米管/纳米线表面包覆氮化硼技术及包覆后的相关技术研究。
21. 2009.12-2011.12山东大学自主创新基金(2009TS001):BNNTs/Al2O3复合陶瓷的制备、高温性能及强韧化机理研究。
22. 2009.1—2010.12,山东省科学技术发展计划项目(2009GG**):纳米α-Al2O3粉体的先驱体低温热解法制备及其关键技术研究。
23. 2008.12—2011.12,山东省自然科学基金项目(Y2008F40):液态金属浮力作用下纳米空心碳球的大规模制备、机理及储氢性能。
24. 2009.1—2011.12,国家自然科学基金项目(**):液态金属浮力下硅纳米管和纳米线的大量制备、生长机理及相关物性研究。
25. 2008.12—2011.12,碳化硅低温制备技术(横向)。
26. 2001年7月-2003年6月,中国博士后科学基金:通过TEM和HRTEM研究纳米半导体材料的奇异性能与组织结构的关系。
27. 2001年9月-2004年8月,山东省自然科学基金(Y2001F06):铜基形状记忆合金在低温下的转变特性及组织结构的演化。
28. 2001年10月-2004年9月,山东省第五批中青年学术骨干项目:无机非金属功能材料超细粉体的制备。
29. 1992年9月-1995年7月,山东省自然科学基金(89F0274):铜基形状记忆合金的研究。
30. 2002年9月-2005年8月,山东省教育厅项目:逆变微弧等离子设备及在内燃机关键零件上的应用。

5. 其他

培养学生:获研究生国家奖学金8人次、山东大学校长奖学金1人次;山东大学“五·四”青年科学奖4人次、山东省优秀硕士学位论文2人次、山东大学优秀硕士学位论文2人次、出国20余人。
毕业去向:高校、研究所等
招生人数:博士生1~2人/年,硕士生2~3人/年


联系方式
**

联系地址
山东大学材料科学与工程学院 济南市经十路 17923号

电子邮箱
byj97@sdu.edu.cn;byj97@126.com











相关话题/山东大学 材料科学与工程学院