删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

青岛能源所开发出新型纳米纤维素基载药包封结构实现对药物的可控释放

本站小编 Free考研考试/2022-02-11

由于化石资源的过度开发和人们对环境问题的日益关注,利用可再生的生物基材料替代传统的石油基材料已引起人们的高度重视。纤维素作为世界上储量最丰富的天然高分子化合物,具有可再生、环境友好、生物相容和可生物降解等优点,在纸基材料、食品药品、纺织化工、光电器件开发等领域得到了广泛的应用。随着纳米技术在木质纤维精炼领域的迅速发展,研究人员发现利用植物纤维素制备得到的纳米纤维素(CNF)材料,除了具有纤维素本身的性质外,还具有纳米级尺度、高长径比、高比表面积、低热膨胀系数、优越的机械性能和光学性能等诸多优异特性。其中,CNF水凝胶因其较好的生物相容性、生物可降解性,以及良好的力学稳定性而成为生物医学应用领域(例如,药物缓释、伤口敷料、组织工程支架等)的重要材料。
  开发具有多重响应性、抗菌性和生物相容性等多功能智能水凝胶是生物材料领域,尤其是纤维素基载药系统的研究热点。虽然CNF基水凝胶在药物缓释中的应用很有前景,但其药物释放初期的突释问题仍有待解决,而且针对特定药物的缓释时间也有待进一步提高。
  近日,青岛能源所崔球研究员带领的代谢物组学研究组和天津科技大学的相关科研人员合作,以水溶性广谱抗生素——盐酸四环素为模型药物,基于前期对CNF和聚多巴胺(PDA)复合材料对改善药物缓释和促进伤口修复的研究(ZL201710612434.0;Carbohydrate Polymers, 2018, 188, 27-36;ChemistrySelect, 2018, 3, 6852-6858),构筑了一种新型的CNF基载药包封结构,可实现对药物的智能可控释放。研究人员首先制备了多孔聚多巴胺纳米颗粒(MPDA),将其对药物进行负载,然后用氧化石墨烯(GO)对其进行包裹,再将GO包裹的MPDA封装于由物理交联作用形成的CNF水凝胶中,制得MPDA@GO/CNF复合水凝胶材料。在该封装结构设计中(如图1所示),GO用于包裹MPDA,既可起到降低药物突释、延长药物缓释和增强复合水凝胶的作用,又可协同MPDA赋予复合水凝胶近红外光响应性。此外,CNF提供的3D网络结构作为第二层的封装,既有利于进一步降低药物突释和延长药物缓释,也可起到屏蔽GO本身毒性的作用,使最终的复合水凝胶具有非常好的细胞相容性。

  图1. MPDA@GO/CNF复合水凝胶包封结构的设计及其可控药物缓释应用
  实验结果显示,该复合水凝胶的机械强度是纯CNF水凝胶的5倍,其药物缓释时间分别是PDA/CNF复合水凝胶和纯CNF水凝胶的3倍和7.2倍,且其药物的可控释放行为可通过改变MPDA和GO的比例来进行调节。此外,该复合水凝胶材料具有敏感的近红外光响应和pH响应的可控释放特性,其药物缓释初始阶段的突释性也明显优于其它同类材料。因此,这种新型的CNF基载药包封结构的设计,将有利于新型智能载药材料的开发,并有望替代传统的石油基材料载药系统,用于化学和物理治疗等。相关研究成果发表在ACS Applied Materials & Interfaces(2020, DOI: 10.1021/acsami.0c15465)期刊上,通讯作者是刘莹莹博士和李滨副研究员。
  相关系列研究得到了国家自然科学基金、国家重点研发计划和山东省自然科学****基金的支持。(文/图 李滨 刘莹莹)
  原文链接:https://doi.org/10.1021/acsami.0c15465
  Yingying Liu*, Qing Fan, Ying Huo, Chao Liu, Bin Li*, and Youming Li. Construction of a Mesoporous Polydopamine@GO/Cellulose Nanofibril Composite Hydrogel with an Encapsulation Structure for Controllable Drug Release and Toxicity Shielding. ACS Applied Materials & Interfaces, 2020, DOI: 10.1021/acsami.0c15465.



附件下载:

相关话题/药物 生物 材料 结构 智能

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 青岛能源所开发出高性能无钴富锂锰基正极材料体系
    随着电动汽车的持续发展,对于长续航动力锂电池的需求日益增加。富锂锰基锂电池正极材料因其高比容量、高工作电压、热稳定性好、低成本等优点一直备受关注,是一种非常有潜力的动力型正极材料。但是其本身在循环中首效低、循环性能和倍率性能差、电压衰降严重、无相匹配的高压电解液等缺点阻碍了其进一步商业化和产业化的发 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所开发生物质综合利用新途径
    生物质是自然界唯一含碳的可再生能源,可以通过热化学转化过程制备液体燃料、燃气、热、电等多种能源产品,发展潜力巨大。多年来,过程的经济性一直是生物质能发展的主要瓶颈。生物质气炭联产技术可同时生产燃气和生物半焦(生物炭),燃气可通过催化转化制取汽油、柴油或航空煤油等能源产品;也可以经净化调变脱碳纯化过程 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所揭示生物质残炭的燃烧机理
    木材等生物质的燃烧过程包括挥发分的明火燃烧(flamingcombustion)和残留焦炭(残炭)的炽燃(glowingcombustion)(如图1所示)。相对于明火燃烧,残炭的炽燃能够在极度欠氧条件下维持,有反应温和、持续时间长的特点,通风条件良好时能够再次引发剧烈的明火燃烧。所以残炭炽燃机理的 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所通过重构阴离子溶剂化结构助力锌/石墨电池高电压电解质
    低成本、长寿命、高功率的二次电池是实现电网规模储能来利用间歇性可再生能源发电的有效途径之一。石墨正极具有成本低、环境友好的特性,而锌负极具有体积能量密度高、储量丰富、锌沉积/溶解过电位低等优点,因此结合锌负极与石墨正极各自优点的锌/石墨双离子电池在电网规模储能上具有良好的应用前景。  青岛能源所仿生 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所通过引入不同功能基团调控碳基材料的储锂性能
    碳材料如富勒烯、碳纳米管、石墨炔、石墨烯等,因其具有超高的导电性、巨大的比表面积、可调控的孔隙结构、价格低廉、环境友好等优点而受到广泛的关注和研究。以碳材料为电极材料的储能器件表现出的超高的储能容量、优异的化学稳定性和成本低及环境优好等优势,使其在能源存储方面具有潜在的发展空间。特别是二维碳材料,如 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所开发出基于电解液改性的高性能富锂锰基正极材料新体系
    现阶段车用动力型锂电池的正极材料,如磷酸铁锂、锰酸锂、镍钴锰三元材料能量密度普遍偏低,严重限制了纯电动汽车的续航里程。富锂锰基正极材料具有高比容量(超过250mAh·g-1)、高工作电压、热稳定性好、低成本等优点,可以达到国家规划的未来动力电池能量密度目标,是一种非常有潜力的动力型正极材料。但是其首 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所首次实现乙酰丙酮的生物合成
    乙酰丙酮是一种重要的有机合成中间体,广泛应用于贵金属萃取、树脂改性等方面,还可以作为燃料添加剂、染料中间体等。传统方法主要是以石化来源的丙酮和乙烯酮为原料,需要利用贵金属催化剂,在强酸高温条件下获得乙酰丙酮,存在条件苛刻、收率较低、易产生污染等问题,这些问题严重阻碍了乙酰丙酮的进一步应用。为了解决以 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所首次阐明合成气制备生物燃料乙醇的能量代谢机制
    2017年9月国家发改委、国家能源局、财政部等十五部委下发了《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》,提出在全国范围内推广使用车用乙醇汽油,到2020年基本实现全覆盖。当前我国生物燃料乙醇产量仅占汽油消耗量的2%左右,若实现全国范围内推广使用E10乙醇汽油,则燃料乙醇缺口超过10 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所开发出高比能储镁正极材料
    可充镁金属电池作为后锂离子电池时代最具竞争力的储能体系之一,凭借其高比能、高安全和低成本等诸多优点,正受到产学研界的日益关注。然而,镁金属电池的发展一直受限于两大瓶颈问题:(1)缺乏同时兼顾镁金属负极与相应正极需求的镁电解质体系;(2)缺乏性能优异的储镁正极材料,因为二价镁离子(Mg2+)具有较高的 ...
    本站小编 Free考研考试 2022-02-11
  • 青岛能源所开发出全新的嗜热全菌催化塑料生物降解策略
    塑料是人类伟大的发明,它在可塑性、耐用性和化学稳定性等方面都令传统材料望尘莫及,因此被广泛地应用于工业生产和生活领域。据统计,目前全世界每年的塑料产量已达4亿吨且与日俱增。然而,塑料制品的大量生产和利用也同时带来源源不断的环境污染问题,仅中国每年就产生7000多万吨塑料垃圾。不仅如此,聚对苯二甲酸乙 ...
    本站小编 Free考研考试 2022-02-11