删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国海洋大学数学科学学院导师教师师资介绍简介-方钟波

本站小编 Free考研考试/2020-11-28

姓 名:方钟波

性 别:男

出生年月:1968 11 月职称/职务:教授/硕导

1.学历与工作简历学习经历:

2003.3-2006.2 韩国 Chonnam National University 理学博士2000.9-2003.2 韩国 Chonnam National University 理学硕士工作经历:

2007.8---至今 中国海洋大学 数学科学学院讲师、副教授、教授

2006.3-2007.6 韩国 Chonnam National University

博士后流动站-ABRL(先导基础研究室) Visiting researcher

2.教学工作

主讲的本科生课程有微积分 I、II;数学物理方法;数学物理方程(专业课);研究生课程: 偏微分方程近代理论;非线性发展方程;非线性微分方程专题等;指导过大学生数学建模竞赛、SRDP、三下乡活动等.

3.研究方向及在研项目

从事研究方向:非线性偏微分方程及其应用

最近研究兴趣有:发展方程解的适定性及定性性质

科研项目:主持或参与过韩国国家重点科研项目3 项;教育部留学基金1 项、省自然基金面

上项目 1 项;正在参与国家自然基金 2 项、主持省自然基金面上项目 1项.

4.获奖项目及奖励等级、荣誉称号

中国海洋大学本科生教学评估中被评为“《数学物理方程》课程教学评估优秀”.

近几年,多次获得过中国海洋大学“先进工作者”、“先进班主任”、“优秀共产党员”、山东省硕士学位论文优秀指导教师奖”、山东省优秀研究生指导教师奖山东省本科毕业论文优秀指导教师奖”、山东省优秀教学成果奖山东省高等学校“优秀科研成果奖”、中国海洋大学大学生科技活动- “优秀指导教师奖”、中国海洋大学本科生毕业论文“优秀指导教师”、中国海洋大学“优秀教学成果”二、三等奖、中国海洋大学“本科教学优秀成果” 二、三等奖等;指导本科生“三下乡”小组获得了校级一等奖 1 项;指导 SRDP 项目若干项; 指导全国大学生数学建模竞赛获得了国家二等奖 1 项、省级若干项;指导美国大学生数学建

模竞赛获得国家二等奖 1 项.

马羚未同学被评为中国海洋大学 2017 研究生年度人物奖.

2012 年国家教委执行研究生国家奖学金以来,指导硕士研究生获得国家奖学金名单:

2019 年:郑亚东、马丹旎;2018年:张环;2017年:肖苏平;2016年:马羚未、刘志卿;

2015 年:王玉祥;2014年:柴艳、杨蕊;2013年:邱丽茹;2012年:张舰云.

指导硕士研究生获得山东省优秀硕士学位论文名单:2019 年:肖苏平;2018 年:马羚未;2013 年:徐向慧.

指导本科生获得山东省优秀学士学位论文名单:2018 年:胡可;2017 年:陶雪妍;2014


年:石人杰.

5.发表文章及论著等主要科研论文:

1. Yong Liu, Ai-Jun Li, ZhongBo Fang, Oblique wave scattering by porous breakwaters/seawalls: Novelanalytical solutions based on contour integral without finding complex roots, To appear in Applied Ocean Research, (2020) (SCI)

2.X.Y. Tao, Z.B. Fang( 通信作者). Global existence of solutions for a $p$-Laplacian equation with nonlocal Fisher-KPP type reaction terms. To appear in Mathematical Methods in the Applied Sciences, (2020) (SCI)

3.X.Y. Tao, Z.B. Fang(通信作者). Uniform boundedness and global existenceof solutions to aquasilinear diffusion equation with nonlocal Fisher-KPP type reaction term. To appear in Taiwanese Journal ofMathematics, (2020) (SCI)

4.Z.Q. Liu, Z.B. Fang(通信作者), The global solvability and asymptotic behaviorof a transmiss ion problem for Kirchhoff-type wave equations withmemory source on the boundary, To appear in MathematicalMethods in the Applied Sciences, (2020).DOI:10.1002/mma.5722 (SCI)

5. Z.Q. Liu, Z.B. Fang(通信作者), Global solvability and general decay of a transmission proble m for Kirchhoff-type wave equationswith nonlinear damping and delay term, Communicationson Pure and Applied Analysis, (2020). DOI:10.3934/cpaa.**(SCI)

6.Z.Q. Liu,Z.B. Fang(通信作者), The long-time stability of solutions forintermittently controll ed viscoelastic wave equations with memory terms, Toappear in Applied Mathematics andOptimization, (2020),26papes. DOI:org/10.1007/s00245-019-09616-8(SCI)

7.H. Zhang, Z.B. Fang( 通信作者),Blow-up analysis for a nonlocal reaction-diffusion system with time-dependentcoefficients, Applicable Analysis, (2020),24 pages. DOI: org/10.1080/00 036811.2018.** (SCI)

8.Y.D. Zheng, Z.B.Fang(通信作者), Criticalexponents for a non-Newtonian polytropic filtration equation with weightednonlocal inner sources, Mathemati calMethods in the Applied Sciences, (2020)(SCI)

9.Y.D. Zheng, Z.B.Fang( 通信作者), Newcritical exponents for a doubly singular parabolic equation, Applicable Analysis, (2020)(SCI)

10.S.P. Xiao, Z.B. Fang( 通信作者).Nonexistenceof solutions for the quasilinear parabolic differential inequalities withsingular potential term and nonlocal source. Journal of Inequalities and Applications, 2020, 2020:doi.org/10.1186/s13660 -020-02329-5. (SCI)

11.马丹旎(硕士研究生), 方钟波*,具有耦合指数反应项的变系数扩散方程组解的爆破现象, 数学物理学报,(2020),中文核心

12.郑亚东(硕士研究生), 方钟波*, 一类具有时变系数梯度项的弱耦合反应-扩散方程组解的爆破分析, 数学物理学报,(2020), 中文核心

13.Y.D. Zheng, Z.B.Fang(通信作者), New critical exponents, large time behavior, andlife span for a fast diffusive p-Laplacian equation with nonlocal source, Zeitschrift für angewandte Mathematik undPhysik, 70 (5)(2019), 17 pages.(SCI)

14.Y.D. Zheng, Z.B.Fang(通信作者),Qualitative properties for a pseudo-parabolic equation with nonlocal reactionterm, Boundary Value Problems, 2019(2019), 134 (1): 17 pp. DOI: org

/10.1186/s13661-019-1246-5(SCI)


15.R. Yang,Z.B. Fang(通信作者), A general decay result for a semilinear heatequation with past and finite history memories, Boundary Value Problems, 2019 (2019),15pages. DOI: org/10.1186

/s13661-019-1150-z (SCI)

16.Z.Q. Liu, C.C. Gao,Z.B. Fang( 通信作者), A general decay estimate for the nonlinear transmissionproblem of weak viscoelastic equations with time delay, Journal of Mathematical Physic, 60(10) (2019), 18pages. DOI:org/10.1063/1.** (SCI)

17.刘志钦, 李小龙,方钟波,任宇鹏,许国辉*,风暴液化沉积的波动分选 Monte-Carlo 模拟, 海洋通报,38(3) (2019), pp.344-352 中文核心

18.L.W. Ma, Z.B. Fang(通信作者). Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear waveequation with logarithmic nonlinear source. Mathematical Methods in the Applied Sciences, 41(7) (2018),pp:2639–2653 (SCI)

19.Y.X. Wang, Z.B.Fang(通信作者), Su-Cheol Yi, Lower bounds forblow-up time in nonlocal parabolic problem under Robin boundary conditions, Applicable Analysis, 98(8) (2019),pp:1403–1414 (SCI)

20.L.W. Ma, Z.B. Fang( 通信作者). Bounds for blow-up time of a reaction-diffusion equation with weighted gradient nonlinearity. Computers and Mathematics with Application, 2018,76(3): 508~519 (SCI)

21.S.P. Xiao, Z.B. Fang( 通信作者). Blow-up phenomena for a porous medium equationwith time-dependent coefficients and inner absorption term under nonlinear boundary flux. Taiwanese Journal ofMathematics, 2018, 22 (2): 349~369 (SCI)

22.L.W. Ma, Z.B. Fang( 通信作者). Blow-up phenomena of solutions for a reaction-diffusion equation with weightedexponential nonlinearity. Computers and Mathematics with Application, 2018, 75(8):2735~2745 (SCI)

23.Y.D. Shen, Z.B. Fang(通信作者). Bounds for the blow-up time of a porous medium equationwith weighted nonlocal source and inner absorption terms. Boundary Value Problems, 2018,2018: doi:10.1186/s13661-018-1038-3. (SCI)

24.L.W. Ma, Z.B. Fang(通信作者). Secondary criticalexponent and life span for a nonlocal parabolic p-Laplace equation. Applicable Analysis, 2018, 95 (5): 775~786 (SCI)

25.L.W. Ma, Z.B. Fang( 通 信 作 者 ). A new second critical exponent and life span for a quasilinear degenerate parabolicequation with weighted nonlocal sources. Communications on Pure andApplied Analysis, 2017, 16 (5):1697~1706 (SCI)

26.L.W. Ma, Z.B. Fang(通信作者). Blow-up analysis for a nonlocalreaction-diffusion equationwith Robin boundary conditions. Taiwanese Journal ofMathematics, 2017, 21 (1): 131~150 (SCI)

27.L.W. Ma, Z.B. Fang( 通信作者). Lower bounds of blow-up time for a Reaction-Diffusionequation with weighted nonlocal sources and Robin type boundary conditions. Acta Mathematica Scientia, 2017, 37A (1): 146~157 (SCI)

28.L.W. Ma, Z.B. Fang( 通信作者). Blow-up phenomena for a semilinear parabolic equationwith weighted inner absorption under nonlinear boundary flux. Mathematical Methods in the Applied Sciences, 2017, DOI:10.1002/mma.3971 (SCI)

29.L.W. Ma, Z.B. Fang( 通信作者). Blow-up analysis for a reaction-diffusion equation with weightednonlocal inner absorptions under nonlinear boundary flux. Nonlinear Analysis: Real World Applications, 2016, 32: 338~354(SCI)

30. Z.Q. Liu, Z.B. Fang( 通信作者). Blow-up phenomena for a nonlocalquasilinear parabolic


equation with time-dependent coefficients undernonlinear boundary flux. Discrete and Continu ousDynamical Systems-Series B, 2016, 21 (10):3619~3635 (SCI)

31.P.G. Xu, Z.B. Fang(通信作者). A new Ostrowski type inequality on time scales. Journal of

Mathematical Inequalities, 2016, 10 (3): 751~760 (SCI)

32.P.G. Xu, Z.B. Fang(通信作者). A new Ostrowskitype inequality on time scales. Journal of Mathematical Inequalities, 2017, 11 (1):41~48 (SCI)

33.R. Yang, Z.B. Fang( 通信作者), S.C. Yi. Blow-upphenomena for a quasilinear parabolic equation with inner source andnonlinear boundary condition. Journal of Mathematical Inequalities, 2016, 19 (4): 601~616 (EI)

34.Z.B. Fang(通信作者), Y.X. Wang,. Blow-upanalysis for a semilinear parabolicequation with time-dependentcoefficients under nonlinear boundary flux. Zeitschrift fuer Angewandte Mathematik und Physik(ZAMP), 2015, 66:2525~2541 (SCI)

35.Z.B. Fang(通信作者), J.Y. Zhang. Global existence and blow-up propertiesof solutions for porous medium equation with nonlinearmemory and weighted nonlocal boundary condition. Zeitschriftfuer Angewandte Mathematik und Physik(ZAMP), 2015, 66: 67~81 (SCI)

36.Z.B. Fang( 通信作者), Y. Chai. Blow-up analysisfor a quasilinear parabolic equationwith inner absorption and nonlinear Neumann boundary condition. Abstract and Applied Analysis, 2014, 2014: 8pages, Article ID289245 (SCI)

37.Z.B. Fang( 通信作者), L.X. Xu. Liouville theoremsfor a singular parabolic differential inequality with a gradientterm. Journal of Inequalities andApplications, 2014, 2014: 18pages,doi:10.1186/1029-242X-2014-62 (SCI)

38.Z.B. Fang(通信作者), J.Y. Zhang. Global andblow-up solutions for the nonlocalp-Laplacian evolution equation with weighted nonlinear nonlocal boundarycondition. Journal of Integral Equationsand Applications, 2014, 26 (2): 171~196 (SCI)

39.X.H. Xu, Z.B. Fang(通信作者). Extinction and decayestimates of solutions for ap-Laplacian evolution equation with nonlinear gradient source and absorption. Boundary Value Problems, 2014, 2014:17pages, doi:10.1186/1687-2770-2014-39 (SCI)

40.X.H. Xu, Y.H. Lee, Z.B. Fang(通信作者). Global existence and nonexistence of solutions for quasilinear parabolic equation. Boundary Value Problems, 2014, 2014:17pages, doi:10.1186/1 687-2770-2014-33 (SCI)

41. Z.B. Fang(通信作者), R.J. Shi. On the (p,h)-convex functionand some integral inequalities.

Journal of Inequalities and Applications, 2014, 2014: 18pages,doi:10.1186/1029-242X-2014

-45 (SCI)

42.Z.B. Fang(通信作者), J.Y. Zhang. Globalexistence and blow-up of solutionsfor p-Laplacian evolutionequation with nonlinear memory term and nonlocal boundary condition. Boundary Value Problems, 2014, 2014:17pages, doi:10.1186/1687-2770-2014-8 (SCI)

43.Z.B. Fang( 通信作者), R. Yang, Y. Chai. Lowerbounds estimate for the blow-uptime of a slow diffusion equation with nonlocalsource and inner absorption. Mathematical Problems in Engineering, 2014, 2014: 6pages, Article ID:764248 (SCI)

44.Z.B. Fang( 通信作者), LR. Qiu. Globalexistence and uniformenergy decay rates for the semilinear parabolic equation with amemory term and mixed boundary condition. Abstractand Applied Analysis 2013, 2013: 8pages,Article ID:326527 (SCI)

45.Z.B. Fang(通信作者), M. Wang. Extinction propertiesof solutions for fast diffusionequation with nonlocal source. Boundary Value Problems, 2013, 2013: 12pages, doi:10.1186/1687-2770-

2013-266(SCI)

46.Z.B. Fang(通信作者), L. Sun, C.J. Li. A note on blow up of solutionsfor the nonlocal quasilinear parabolic equation with positive initial energy. Boundary Value Problems, 2013, 2013: 10pages,doi:10.1186/1687-2770-2013-181 (SCI)

47.Z.B. Fang( 通信作者), J.Y. Zhang. Influence of weight functionsto a nonlocal p-Laplacianevolution equation with inner absorption and nonlocal boundary condition. Journal ofInequalities and Applications, 2013, 2013:10pages, doi: 10.1186/1029-242X-2013-301 (SCI)

48.X.H. Xu, Z.B. Fang( 通信作者), S.C. Yi. Extinction and decay estimates of solutions for porous medium equation with nonlocalsource and strong absorption. Boundary Value Problems, 2013, 2013:13pages, doi: 10.1186/1687-2770-2013-24 (SCI)

49.Z.B. Fang( 通信作者), S.C. Yi. Existence and nonexistence of entire positivesolutions for (p,q)-Laplacianelliptic system with a gradient term. Boundary Value Problems, 2013, 2013: 11pages, doi: 10.1186/1687-2770-2013-18 (SCI)

50.J. Wang, M.L.Su, Z.B. Fang. Local and globalexistence and blow up of solutions to a polytropic filtration system withnonlinear memory and nonlinear boundary conditions. Bull. KoreanMath. Soc, 2013, 50(1): 37~56 (SCI)

51.Z.B. Fang( 通 信 作 者 ), X.H. Xu. Extinction behaviorof solutions for the p-Laplacianequations with nonlocal sources. Nonlinear Analysis: Real World Applications, 2012,13: 1780~1789 (SCI)

52.Z.B. Fang( 通信作者), G. Li. Extinction and decay estimateof the solutions for a class of doubly degenerate equation. Appl. Math. Lett 2012, 25: 1795~1802 (SCI)

53.Z.B. Fang( 通信作者), J.Y. Zhang, S.C. Yi. Roles of weight functionsto a nonlocal porous mediumequation with inner absorption and nonlocal boundary condition. Abstract and Applied Analysis 2012, 2012: 16pages, Article ID:326527 (SCI)

54.Z.B. Fang( 通信作者). A very singularsolution of a doubly degenerate parabolic equationwith nonlinear convection. Journal ofthe Korean Mathematical Society. 2010,47(4): 789~804 (SCI)

55.Z.B. Fang(通信作者), D.X. Piao, J. Wang. Existenceand Uniqueness of Very SingularSolution of a Degenerate Parabolic Equation with Nonlinear Convection. Boundary Value Problems, 2009, 2009: 16pages, Article ID 415709 (SCI)

56.Z.B. Fang(通信作者), M.K. Kwak. A very singular solutionfor the slow diffusion equation with nonlinear convection. Journal of Mathematical Analysis and Applications, 2008, 337(2):1211~1225 (SCI)

57.Z.B. Fang(通信作者), M.K. Kwak. Complete classification of shape functionsof self-similar solutions. Journal of Mathematical Analysis and Applications, 2007, 330(2): 1447~1464 (SCI)

58.J.G. Go, Y.M. Choi,Z.B. Fang. Numerical analysis acircular arch buckling under the symmetric pressure. Mathematical Problems in Engineering, 2006, 2006:11pages, Article ID: 61806 (SCI)

59.Z.B. Fang( 通信作者), M.K. Kwak. Negatively boundedsolutions for a parabolic partial differential equation. Bull. Korean Math. Soc, 2005, 42(4):829~836 (SCI)

60.Z.B. Fang( 通信作者), M.K. Kwak. A finitedimensional property of a parabolicpartial differential equation. J. Dynam. Differential Equations, 2005, 17(4):845~855 (SCI)

主要教研论文:


1. 方钟波(通信作者),中国大学数学教育—以中国海洋大学为例(韩国语),Newsletter of the Korean mathematical society,154:03(2014), pp.18-21. 国家级教育期刊

2.方钟波(通信作者),张永梅,徐高鹏,殷一皓,学生眼中的多媒体教学,中国海洋大学 高教研究,89:01(2014), pp.43-45.

3.方钟波(通信作者),张永梅,徐高鹏,殷一皓,多媒体教学中视频利用情况分析,中国 海洋大学高教研究,91:03(2014), pp.50-54.

4. 方钟波(通信作者),高存臣,李长军,张临杰,《高校数学系列课程教学改革与创新人才培养初探》,教育教学论坛,1:6(2013), pp.34-36. 省级教育期刊

主要教研项目:

1.山东省精品课程-《常微分方程》建设 主要负责人;

2.中国海洋大学精品课程-《数学物理方程》建设 负责人;

3.山东省高等学校教学改革研究项目-《数学物理方程》教学模式的探讨 (**) 主持;

4. 山东省高等学校教学改革研究项目-结合专业特色的“数学物理方法”教学改革 探讨(2015 M007) 主持;

5.山东省研究生创新计划项目-研究生跨学科应用能力培养探讨 (SDYY14127) 主持..

6.山东省研究生教育优质课程项目-偏微分方程近代理论 (SDYKC19015) 主持..

相关话题/科学学院 数学