删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于小波优化LSTM-ARMA模型的岩土工程非线性时间序列预测

本站小编 Free考研考试/2022-02-13

DOI: 10.11908/j.issn.0253-374x.20384

作者:

作者单位: 1.同济大学 土木工程学院,上海 200092;2.同济大学 岩土及地下工程教育部重点实验室,上海 200092;3.上海城投水务(集团)有限公司,上海 200002;4.上海勘察设计研究院(集团)有限公司,上海 200093


作者简介: 钱建固(1972—),男,教授、博士生导师,工学博士,主要研究方向为岩土力学与本构理论、软土基础工程和 交通岩土工程. E-mail:qianjiangu@tongji.edu.cn


通讯作者:

中图分类号: TU433


基金项目: 国家自然科学基金资助项目(51578413);苏州河段深层排水调蓄管道系统工程试验段监测技术验证与分析模型研究项目;中央高校基本科研业务费专项资金资助(22120190220)




Prediction for Nonlinear Time Series of Geotechnical Engineering Based on Wavelet-Optimized LSTM-ARMA Model
Author:

Affiliation: 1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China;3.Shanghai Chengtou Water Group Co., Ltd., Shanghai 200002, China;4.Shanghai Geotechnical Investigation and Design Institute Engineering Consulting (Group) Co., Ltd., Shanghai 200093, China


Fund Project:




摘要
| 图/表
| 访问统计
| 参考文献
|相似文献
| 引证文献
| 资源附件

摘要:为了更精确地预测岩土工程应力、变形等的非线性时间序列,提出了基于小波优化的长短时记忆神经网络?自回归滑动平均模型(LSTM-ARMA)预测模型。首先使用小波分析将监测序列分解成趋势项和噪声项,采用LSTM网络滚动预测趋势项、ARMA模型预测噪声项,并将趋势项预测值与噪声项预测值之和作为总的时间序列预测值。在此基础上,以上海云岭超深基坑工程为案例进行了基坑地表沉降分析,结果表明组合模型的预测精度要高于单一LSTM模型且更加稳定;进一步采用弹塑性有限元对基坑开挖诱发的地表沉降进行了预测,并与人工智能预测结果进行对比,验证了人工智预测模型的合理性。分析表明,当后续工况与前置工况所诱发的变形机理突变时,人工智能预测误差增大,但伴随后续工况的推进,人工智能预测误差将逐渐减小。



Abstract:In order to predict the nonlinear time series of geotechnical engineering more precisely, a wavelet-optimized LSTM-ARMA model is proposed. First, the monitoring series are decomposed into a trend term and a noise term through wavelet analysis. Then, the trend term is predicted by the long short-term memory network (LSTM), while the noise term by the autoregressive moving average model (ARMA). Finally, the sum of the predicted values of both terms is taken as the total predicted results. The performance of the method is validated through the case analysis of an ultra-deep foundation pit which also indicates that the combined model gives a more precise and stable prediction than the LSTM network. Besides, the elastic-plastic finite element method is also used to predict the ground settlement induced by foundation pit excavation, and its results are compared with those of the artificial intelligence method, verifying the rationality of the latter. The analysis shows that the prediction error of the artificial intelligent method will increase significantly when the deformation mechanisms of the previous and the subsequent working conditions change suddenly, but it will decrease gradually with the progress of the subsequent working conditions.





PDF全文下载地址:

点我下载PDF
相关话题/上海 序列 同济大学 文献 岩土