删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于集聚系数的工作流切片与多云优化调度

本站小编 Free考研考试/2022-02-13

DOI: 10.11908/j.issn.0253-374x.20519

作者:

作者单位: 东华大学 计算机科学与技术学院,上海 201620


作者简介: 王鹏伟(1984—),男,副教授,工学博士,主要研究方向为云计算与边缘计算、服务计算、大数据等. E-mail: wangpengwei@dhu.edu.cn


通讯作者:

中图分类号: P312


基金项目: 国家自然科学基金项目(61602019)、东华大学“励志计划”项目(LZB2019003)、上海市“科技创新行动计划”高新技术领域项目(19511101802)、中央高校基本科研业务费专项资金项目




Clustering Coefficient-Based Workflow Slicing and Multi-Cloud Scheduling
Author:

Affiliation: School of Computer Science and Technology, Donghua University, Shanghai 201620,China


Fund Project:




摘要
| 图/表
| 访问统计
| 参考文献
|相似文献
| 引证文献
| 资源附件

摘要:已有的工作流云调度研究,通常将任务和云资源一一对应,难以解决由于频繁的数据通信而带来的完工时间上升、成本增加以及可能的故障风险等问题。因此,为减轻任务间数据通信对完工时间和成本的影响,提出了一种基于集聚系数的工作流切片与多云优化调度解决方案。通过聚类算法对工作流进行初步切片,引入集聚系数来判断和优化切片效果,并在寻找调度方案的过程中根据云实例的实际情况动态地调整切片结果。实验结果表明,所提方案能够有效地减少工作流中因大量数据通信而带来的高昂成本和完工时间。



Abstract:Workflow scheduling in multi-cloud environment is a research hotspot and challenge in recent years. The dependencies in workflow are usually represented by the transmission of data, which also determines the execution order of tasks. Existing studies for workflow scheduling usually map each task to a different cloud resource, which is difficult to solve the problems of increasing make-span and cost, and the possible failure risk caused by frequent data communication. In order to reduce the impact of data communication between tasks, this paper proposes a workflow slicing and multi-cloud scheduling solution based on clustering coefficient. Preliminary slicing of workflow is conducted by using a clustering algorithm, and the clustering coefficient is introduced to evaluate and optimize the slicing effect. In the process of finding the optimal scheduling solution, the slicing result is adjusted dynamically according to the actual situation of cloud instances. Experimental results show that the proposed method can effectively reduce the high cost and make-span caused by large amount of data communications in workflow.





PDF全文下载地址:

点我下载PDF
相关话题/计算 资源 东华大学 方案 优化