删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

建筑活荷载的大数据调查方法研究

本站小编 Free考研考试/2022-02-13

闂佺懓鐡ㄩ崝鎺旀嫻閻旂儤瀚氶柛娆嶅劚閺佲晠鎮跺☉杈╁帨缂佽鲸绻堝畷姘跺幢閺囥垻鍙愰柣鐘叉搐婢т粙鍩㈤懖鈺傚皫闁告洦鍓氶悘鎰版⒑閸撗冧壕閻㈩垰顕禍鍛婃綇椤愩垹骞嬮梺鍏煎劤閸㈣尪銇愰敓锟�40%闂佸湱绮崝鏍垂濮樿鲸灏庢慨妯垮煐鐏忣亪鏌ㄥ☉铏
闂佽浜介崝宀€绮诲鍥ㄥ皫婵ǹ鍩栫亸顏堟煛婢跺﹤鏆熸繛澶樺弮婵℃挳宕掑┑鎰婵炲濯寸紞鈧柕鍡楀暣瀹曪綁顢涢悙鈺佷壕婵ê纾粻鏍瑰⿰鍕濞寸姴鐗忕槐鏃堝箣閻樺灚鎯i梻渚囧亝閺屻劎娆㈤悙瀵糕枖闁绘垶蓱閹疯京绱掗弮鈧悷锔炬暜瑜版帞宓侀柛顭戝櫘閸氬懎霉閼测晛袥闁逞屽墯闁芥墳P婵炴潙鍚嬮懝楣冨箟閹惰棄鐏虫繝鍨尵缁€澶愭煟閳ь剙濡介柛鈺傜洴閺屽懎顫濆畷鍥╃暫闁荤姴娲よぐ鐐哄船椤掑倹鍋橀柕濞у嫮鏆犻梺鍛婂笒濡棃妫呴埡鍛叄闁绘劦鍓欐径宥夋煙鐎涙ḿ澧柟鐧哥秮楠炲酣濡烽妸銉︾亷婵炴垶姊瑰姗€骞冨Δ鍛櫖鐎光偓閸愭儳娈炬繛瀵稿缂嶁偓闁靛棗鍟撮幊銏犵暋閺夎法鎮�40%闂佸湱绮崝鏍垂濮樿泛违闁稿本绻嶉崵锕€霉閻欏懐绉柕鍡楀暟閹峰綊顢樺┑鍥ь伆闂佸搫鐗滈崜娑㈡偟椤栨稓顩烽悹浣哥-缁夊灝霉濠х姴鍟幆鍌炴煥濞戞ǹ瀚版繛鐓庡缁傚秹顢曢姀鐘电К9闂佺鍩栬彠闁逞屽墮閸婃悂鎯冮姀銈呯闁糕剝娲熼悡鈺呮⒑閸撗冧壕閻㈩垱鎸虫俊瀛樻媴鐟欏嫬闂梺纭呯堪閸庡崬霉濮椻偓閹囧炊閳哄啯鎯i梺鎸庣☉閼活垵銇愰崒鐐茬闁哄顑欓崝鍛存煛瀹撴哎鍊ら崯鍫ユ煕瑜庣粙蹇涘焵椤戣儻鍏屾繛鍛妽閹棃鏁冩担绋跨仭闂佸憡鐨滄担鎻掍壕濞达綁鏅茬花鎶芥煕濡や礁鎼搁柍褜鍏涚粈浣圭閺囩喓鈹嶉幒鎶藉焵椤戝灝鍊昋缂備礁鏈钘壩涢崸妤€违濞达綀娅i崣鈧繛鎴炴煥缁ㄦ椽鍩€椤戞寧绁伴柣顏呮尦閹椽鏁愰崶鈺傛儯闂佸憡鑹剧€氼剟濡甸崶顒傚祦闁告劖褰冮柊閬嶆煏閸☆厽瀚�
DOI: 10.11908/j.issn.0253-374x.19184

作者:

作者单位:


作者简介:


通讯作者:

中图分类号: TU312


基金项目: 广东大数据科学中心联合基金重点支持项目(U1711264)




Research on Big Data Survey Method of Building Live Load
Author:

Affiliation:


Fund Project:




摘要
| 图/表
| 访问统计
| 参考文献
|相似文献
| 引证文献
| 资源附件

摘要:可靠的荷载取值是建筑结构可靠性设计的基础。传统上采用入户抽样称重的方式调查建筑物活荷载,存在效率低、成本高、周期长、样本少、时效性差以及大件物品称重困难等问题。基于大数据研究思维,提出了室内持久性活荷载的新型研究方式,通过图片、音频、视频、识别码等多源异构数据,结合互联网资源,综合目标检测、图像、语音或文本识别等手段来获得建筑物室内物品的重量。在详细介绍实施方法的流程后,进一步通过案例进行研究,结果表明利用大数据技术可以实现高效、便捷的建筑物活荷载调查,构建全新的荷载研究范式。



Abstract:Reliable live load value is the prerequisite for reliability design of civil engineering buildings. Traditionally, building live loads are investigated by means of indoor objects sampling and weighing. This method has many problems such as low efficiency, high labor cost, long duration, limited samples, poor timelines in reflecting indoor items change and difficulty in weighing large items. Inspired by the big data concept, this paper proposes a new research method for investigating indoor sustained live loads. Through the multi-source heterogeneous data such as photos, videos, identification codes, and voices, combined with internet resources, the weight of objects in the building is obtained by means of object detection, image retrieval, voice or text recognition. After the detailed introduction of the implementation method, further case studies show that the use of big data technology can achieve efficient and convenient building live load survey, and build a new load research paradigm





PDF全文下载地址:

点我下载PDF
相关话题/数据 文献 资源 图片 科学