删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于扩样技术和地理加权泊松回归模型的交通量估计

本站小编 Free考研考试/2022-02-13

DOI: 10.11908/j.issn.0253-374x.19523

作者:

作者单位: 同济大学 道路与交通工程教育部重点实验室,上海201804


作者简介: 荆 毅(1982―),男,工学博士,主要研究方向为交通运输规划与管理。E-mail: jingyi@tongji.edu.cn


通讯作者:

中图分类号: U491.2


基金项目: 国家自然科学基金(71734004)




Estimating Traffic Volume Based on Sampling Expansion Technique and Geographically Weighted Poisson Regression
Author:

Affiliation: Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China


Fund Project:




摘要
| 图/表
| 访问统计
| 参考文献
|相似文献
| 引证文献
| 资源附件

摘要:提出了扩样和地理加权泊松回归(GWPR)相结合的方法来估计有限观测值下的路网流量。首先,采用基于空间相似性的扩样方法对不平衡的观测流量进行纠正;然后,考虑道路几何特征和建成环境等因素的影响,采用地理加权泊松模型估计车道的小时交通量。结果表明,与传统线性回归模型和原始样本下的地理加权泊松模型相比,组合模型具有最佳的估计性能。此外,自变量与交通量关系的局部空间异质性也得到了很好的捕捉。



Abstract:A method combining sampling expansion with geographically weighted Poisson regression (GWPR) was proposed to estimate the road network traffic volume with limited observation values. Firstly, a sampling expansion method based on the spatial similarity was employed to correct the imbalance missing data. Then, the GWPR was employed to estimate the hourly traffic volume of the lane considering the influence of the geometric characteristics of the road and the built environment. Results show that: compared with traditional linear models and GWPR with the original sample set, the proposed combination model has the best estimation performance. In addition, the local spatial heterogeneity of the relationship between independent variables and traffic volume is also well captured.





PDF全文下载地址:

点我下载PDF
相关话题/地理 观测 道路 文献 空间