删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

同济大学物理科学与工程学院导师教师师资介绍简介-陈杰教授博导

本站小编 Free考研考试/2021-01-12

陈杰 教授博导
邮箱:jie@tongji.edu.cn
联系方式:上海市杨浦区赤峰路67号第一实验楼509室

个人简历
教育经历:
2007 - 2011,新加坡国立大学,物理学,博士
2005 - 2007,南京大学,声学,硕士
2001 - 2005,南京大学,声学,学士

工作经历:
2018 - 至今, 同济大学,物理科学与工程学院,教授
2015 - 2017,同济大学,物理科学与工程学院,“领航计划”特聘研究员
2013 - 2015,瑞士苏黎世联邦理工学院,机械系,ETH Fellow
2011 - 2013,新加坡国立大学,物理系,博士后
教学情况
凝聚态物理新进展
研究方向
纳米尺度热传导的理论研究及数值模拟
二维材料的热输运性质
热电材料及热界面材料
分子动力学模拟

招聘信息
常年择优招收博士后1-2名,提供有竞争力的薪酬,有意者欢迎与我联系(jie@tongji.edu.cn)。

正主持科研项目
1. 国家自然科学基金(面上项目),批准号:**, 2021-2024,在研。
2. 上海市自然科学基金(探索类),批准号:19ZR**, 2019-2022,在研。
已结题科研项目
1. 国家自然科学基金(青年项目),批准号:**, 2016-2018,结题。
2. 上海市自然科学基金(探索类),批准号:17ZR**, 2017-2020,结题。

《Wiley》杂志Materials Views网站在线报道
http://www.materialsviewschina.com/2016/01/19018/?
奖励荣誉
获奖:
瑞士苏黎世联邦理工学院 ETH Fellow (2013-2015)
新加坡国立大学优秀博士论文奖(2012)
国家优秀自费留学生奖(2010)
新加坡国立大学校长博士研究生奖(2007-2011)

荣誉:
同济大学“双带头人”党支部书记陈杰工作室(2020)
同济青年五四奖章(2020)
南京大学优秀本科毕业生(2005)
学术兼职
中国工程热物理学会传热传质分会青年工作委员会首届委员
美国物理学会会员
美国化学学会会员
玛丽居里****协会会员
Science Advances, Nano Letters, ACS Nano, APL, JAP, Carbon, Scientific Reports, Nanoscale, AIP Advances, EPJB等杂志审稿人
主要论著
国际发明专利一项:KOUMOUTSAKOS, Petros; CHEN, Jie; WALTHER, Jens H.; THERMAL INTERFACE ELEMENT, 2 March 2017, International Publication No.: WO2017/032657A1.
已发表SCI论文50余篇,共被引用一千八百余次(Web of Science),H-index: 26。
ResearcherID:http://www.researcherid.com/rid/G-1716-2012
ORCID: http://orcid.org/0000-0003-4599-3600
Google Scholar:https://scholar.google.ch/citations?user=rQ_iitwAAAAJ&hl=en
邀请书籍章节
1. J. Chen, G. Zhang, and B. Li, Molecular Dynamics Simulations for Computing Thermal Conductivity of Nanomaterials. Invited book chapter in “Nanoscale Energy Transport and Harvesting: A Computational Study”, Pan Stanford Publishing (2015).
2. 陈杰,张刚,《纳米材料热传导》第六章,“分子动力学方法”,科学出版社 (2017).
代表性论文(+同等贡献, *通讯作者)
24. Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen*, N. Li*, and G. Zhang*,?Size-dependent phononic thermal transport in low-dimensional nanomaterials, Physics Reports 860, 1-26(2020).
23. Z. Zhang, Y. Ouyang, Y. Guo, T.Nakayama, M. Nomura, S. Volz*, and J.Chen*, Hydrodynamic phonon transport in bulk crystalline polymers, Physical Review B, 102, 195302 (2020).

22.?Z. Zhang, S. Hu, Q. Xi, T. Nakayama,S. Volz, J. Chen*, and B. Li, Tunablephonon nanocapacitor built by carbon schwarzite based host-guest system, Phys. Rev. B 101, 081402(R) (2020).
21. X. Xu, J. Zhou*, J. Chen*,?Thermal Transport in Conductive Polymer-Based Materials, Adv. Funct. Mater. 30, ** (2020).
20. Y. Ouyang, Z. Zhang, Q. Xi,P. Jiang, W. Ren, N. Li, J. Zhou, and J.Chen*, Effect of boundary chain folding on thermal conductivity of lamellaramorphous polyethylene, RSC Advances, 9, 33549–33557 (2019).
19. S. Hu, Z. Zhang, P. Jiang, W. Ren, C. Yu, J. Shiomi, and J. Chen*, Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures, Nanoscale 11, 11839-11846 (2019).
18. Y. Ouyang, Z. Zhang, D. Li, J. Chen*, and G. Zhang*, Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance, Annalen Der Physik 531, ** (2019).
17. S. Hu+, Z. Zhang+, P. Jiang, J. Chen*, S. Volz*, M. Nomura, and B. Li*, Randomness-Induced Phonon Localization in Graphene Heat Conduction, J. Phys. Chem. Lett. 9, 3959-3968 (2018).
16. Z. Zhang, S. Hu, T. Nakayama, J. Chen*, and B. Li, Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes, Carbon 139, 289-298 (2018).
15. Y. Ma+, Z. Zhang+, J.-G. Chen, K. Saaskilahti, S. Volz, and J. Chen*, Ordered water layer induced by interfacial charge decoration leads to an ultra-low Kapitza resistance between graphene and water, Carbon 135, 263-269 (2018).
14. X. Xu, J. Chen*, J. Zhou*, and B. Li, Thermal Conductivity of Polymers and Their Nanocomposites, Adv. Mater. 30, ** (2018).
13. Z. Zhang, J. Chen*, and B. Li*, Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals, Nanoscale 9, 14208-14214 (2017).
12. H. Wang+, S. Hu+, K. Takahashi, X. Zhang*, H. Takamatsu*, and J. Chen*, Experimental study of thermal rectification in suspended monolayer graphene, Nat. Commun. 8, 15843 (2017).
11. Z. Zhang, S. Hu, J. Chen*, and B. Li*, Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation. Nanotechnology 28, 225704 (2017).
10. S. Hu, J. Chen*, N. Yang, and B. Li*, Thermal transport in graphene with defect and doping: Phonon modes analysis. Carbon 116, 139-144 (2017).
9. J. Chen*, J. H. Walther, and P. Koumoutsakos*, Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water. Nanotechnology 27, 465705 (2016).
8. J. Chen*, J. H. Walther*, and P. Koumoutsakos*, Covalently bonded graphene-carbon nanotube hybrid for high-performance thermal interfaces. Adv. Funct. Mater. 25, 7539 (2015).
7. D. Alexeev+, J. Chen+, J. H. Walther, K. P. Giapis, P. Angelikopoulos, and P. Koumoutsakos*, Kapitza resistance between few-layer graphene and water: Liquid layering effects. Nano Lett. 15, 5744 (2015).
6. J. Chen, J. H. Walther, and P. Koumoutsakos*, Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 14, 819 (2014).
5. J. Chen*, G. Zhang*, and B. Li*, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 5, 532 (2013).
4. J. Chen, G. Zhang*, and B. Li, Impacts of atomistic coating on thermal conductivity of germanium nanowires. Nano Lett. 12, 2826 (2012).
3. J. Chen, G. Zhang*, and B. Li*, Phonon coherent resonance and its effect on thermal transport in core-shell nanowires. J. Chem. Phys. 135, 104508 (2011).
2. J. Chen, G. Zhang*, and B. Li, A universal gauge for thermal conductivity of silicon nanowires with different cross sectional geometries. J. Chem. Phys. 135, 204705 (2011).
1. J. Chen, G. Zhang*, and B. Li, Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Lett. 10, 3978 (2010).


相关话题/物理科学 同济大学