删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

同济大学海洋与地球科学学院导师教师师资介绍简介-王跃

本站小编 Free考研考试/2021-01-12


王跃 副教授

办公地址:海洋楼414 办公电话:**

电子邮箱: 163wangyue@tongji.edu.cn
个人主页:http://ocean.tongji.edu.cn/space/163wangyue/
https://163wangyue.wordpress.com/

通讯地址:上海市四平路1239号,同济大学海洋与地球科学学院,邮编200092


教育背景
2009.03 - 2013.03: 同济大学海洋与地球科学学院,海洋地质系(博士研究生)
博士论文:瞬变太阳辐射驱动的亚洲-太平洋气候演化
2006.09 - 2009.03: 同济大学海洋与地球科学学院,海洋地质系(硕士研究生)
硕士论文:末次盛冰期热带表层海水温度对ITCZ与夏季风影响的数值模拟
2002.09 - 2006.06: 同济大学海洋与地球科学学院,地球物理系(本科)
本科论文:基于射线追踪的地震观测系统照明分析

工作经历
2016.01-现在: 同济大学海洋与地球科学学院,副研究员
2013.04 - 2016.01:中国气象科学研究院博士后工作站,博士后

研究兴趣:
古海洋与古气候数值模拟
利用CAM3大气环流模式,模拟末次盛冰期热带海温不同重建资料的气候敏感性;
利用CCSM3海气耦合模式,模拟46000年来轨道岁差辐射量驱动的中低纬海气耦合系统演变;
利用UViC中等复杂程度气候模式,研究全新世太阳活动驱动的热带大洋上层水体结构变动。
利用CESM海气耦合模式,模拟300ka以来轨道岁差辐射量和大气CO2浓度驱动的亚洲-印度洋-太平洋海气耦合系统演变。

科研项目
“轨道尺度热带太平洋气候演变的多模式-多指标对比”(编号KJ005),2017.01 – 2018. 12,5
,2016年度同济大学青年优秀人才培养行动计划项目,负责人;
“岁差驱动的热带太平洋类ENSO型古气候响应”(编号**),2017.01 – 2019.12,20
,国家自然科学基金青年基金项目,负责人;
第55批中国博士后科学基金面上项目二等资助(编号2014M550913),2014.05 – 2015.12,5
,负责人;

研究成果
王跃,翦知湣,赵平. 末次盛冰期太平洋赤道辐合带对暖池外热带海表温度变化的敏感性. 第四纪研究,2009, 29(2): 221-231. pdf
王跃,翦知湣,赵平. 末次盛冰期热带降雨对低纬表层海温的敏感性. 第四纪研究,2011, 31(2): 244-255. pdf
Wang, Y., Z. Jian, and Zhao P., Extratropical modulation on Asian summer monsoon at precessional bands, Geophys. Res. Lett., 2012, 39, L14803, doi:10.1029/2012GL052553. links
Wang Yue, Jian ZhiMin, Zhao Ping, Dang Haowen, Xiao Dong. Solar forced transient evolution of Pacific upper water thermal structure during the Holocene in an earth system model of intermediate complexity. Chinese Science Bulletin, 2013, 58 (15): 1832-1837. Doi:10.1007/s11434-012-5576-2 links
Chinese version:王跃,翦知湣,赵平,党皓文,肖栋. 全新世太阳活动驱动的太平洋上层热力结构的瞬变演化. 科学通报, 2013,58(4):379-384.
Xiao Dong, Zhao Ping, Wang Yue, and Zhou XiuJi. Modeling the climatic implications and indicative sense of the Guliya δ18O-temperature proxy record to the ocean-atmosphere system during the past 130ka. Climate of the Past, 2013, 9: 735-747. Doi:10.5194/cp-9-735-2013 links
Xiao Dong, Zhao Ping, Wang Yue, Tian Qinhua and Zhou XiuJi. Millennial-scale phase relationship between North Atlantic deep-level temperature and Qinghai-Tibet Plateau temperature and its evolution since the Last Interglaciation. Chinese Science Bulletin, 2014, 59(1): 75-81.Doi: 10.1007/s11434-013-0028-1.links
Wang, Y., P. Zhao, Z.Jian, D. Xiao, and J. Chen (2014), Precessional forced extratropical North Pacific mode and associated atmospheric dynamics, J. Geophys. Res. Oceans, 119(6), 3732-3745, doi:10.1002/2013JC009765. links
Wang, Y., Z. Jian, P. Zhao, J. Chen, and D. Xiao (2015), Precessional forced evolution of the Indian Ocean Dipole, J. Geophys. Res. Oceans, 120(5), 3747-3760, doi:10.1002/2015JC010713. links
Wang, Y., Z. Jian, P. Zhao, D. Xiao, and J. Chen (2016),Relative roles of land- and ocean-atmosphere interactions in Asian-Pacific thermal contrast variability at the precessional band, Scientific Reports, 6.28349, doi:10.1038/srep28349.links
Xiao Dong, Zhao Ping, Wang Yue, Zhou Xiuji. Responses of the summer Asian-Pacific zonal thermal contrast and the associated evolution of atmospheric circulation to transient orbital changes during the Holocene. Scientific Reports, 2016, 6, 35816; doi: 10.1038/srep35816.
Wang Yue, Jian Zhimin, Zhao Ping, Dang Haowen, Liu Zhongfang, Xiao Dong, Chen Junming. Two anomalous modes of the precessional modulated annual cycle in the tropical Pacific. 2017, Climate Dynamics, Under review, CLDY-D-17-00768.

荣誉与奖励
1. 同济大学优秀博士学位论文,校级,2013年7月
2. 博士研究生国家奖学金,国家级,2012年12月
学术期刊任职
2017.5月 担任Palaeogeography, Palaeoclimatology, Palaeoecology杂志审稿人
学术组织任职
2017年1月至今,中国第四纪科学研究会古气候模拟专业委员会委员

My Research
Modeling the influence of Tropical Sea Surface Temperature (SST) on Intertropical convergence zone (ITCZ) and summer monsoon during the Last Glacial Maximum (LGM)
地质历史中,地球轨道参数变化主导着低纬太阳辐射量和热带表层海水温度(SST)的分布与变化,而热带辐合带(ITCZ)和夏季风则受到SST梯度和分布格局的控制,是热带大气对低纬太阳辐射和SST异常强迫的响应。末次盛冰期(LGM)时期热带SST的重建存在很大不确定性:CLIMAP (Climate: Long-range Investigation, Mapping, and Prediction)计划于1976和1981年的重建不断受到后续研究的挑战。虽然这些新的热带SST重建资料本身仍存在很大差别与分歧,但至少为LGM时期热带SST的变化幅度和分布格局提供了大量新的数据支撑。我们收集了三套不同区域的浮游有孔虫转换函数重建SST:(1)Wang (1999)的热带西太平洋SST重建;(2)Mix等(1999)的赤道东太平洋和热带大西洋SST重建;(3)MARGO(Multiproxy approach for the reconstruction of the glacial ocean surface)计划(2004)的全球热带SST重建。然后将其内嵌到CLIMAP全球SST中,作为CAM3大气环流模式的边界条件,研究冰期条件下不同的SST分布格局对ITCZ和夏季风的影响,以揭示古气候数值模拟中由SST边界条件导致的气候不确定性。
The changes of earth’s orbital parameter dominate the distributions and variations of low latitude insolation and different patterns and gradients of SST, which further induce drastic responses in the tropical atmosphere (such as ITCZ and summer monsoon) through tropical convections and atmospheric teleconnections. But there are still large uncertainties in the tropical SST reconstructions during the Last Glacial Maximum (LGM). We collected three LGM SST datasets reconstructed by planktonic foramifera transfer functions in different tropical regions and inlayed them into global CLIMAP SST field as new boundary conditions of CAM3, a newest atmospheric general circulation model (AGCM). Through the sensitivity experiments of CAM3, we investigated the influences of different tropical SST patterns on ITCZ and summer monsoon, and revealed the LGM climate uncertainties due to the SST variations in paleoclimate modeling. We also used the SST and Sea ice datasets outputted from CCSM3’s LGM simulation as boundary conditions of CAM3, and compared this simulation of CAM3 to that of CCSM3.



=============================================
Solar forced transient evolution of Pacific upper water thermal structure during the Holocene in UViC_ESCM, an earth system model of intermediate complexity
全新世以来大气层顶接收到的总太阳辐照度(TSI)呈现出百年至年代际时间尺度变化,这种由太阳发出的短波辐射总量变化受太阳活动本身控制,并被认为可以导致地球表层气候的显著响应,例如太平洋上层水体的热力结构可能在太阳活动最大值期呈现出类似La Nina的SST响应格局。我们利用中等复杂程度的地球气候系统模式(UViC_ESCM)进行瞬变加速模拟,结果发现在过去七千年以来的太阳活动驱动下,西太平洋暖池的三维热力结构在百年时间尺度上表现出增强放大型响应。TSI增大时, 暖池表层的SST变暖幅度要大于赤道东太平洋,导致热带太平洋纬向(由西向东)的SST梯度增强,次表层TWT在副热带北太平洋变幅大于赤道西太平洋,导致经向(由北向南)的TWT梯度增强。这两个温度梯度与TSI驱动在1100、769、500、357和208年周期上都显著相关。
The total shortwave radiation outputted by the solar is dominated by the solar activities. During the Holocene, small-magnitude variations of Total Solar Irradiance (TSI) at the top of atmosphere (TOA) can results in significant surface climate responses of the Earth at centennial-decadal timescales. And the Pacific upper water thermal structure may act as a transmitter of solar forcing with a La Nina-like SST pattern during solar maxima periods. In a transient accelerated simulation of UViC_ESCM, we identified enhanced linear responses of 3-dimensional Western Pacific Warm Pool to centennial solar activities (or TSI) forcing since 7 ka. During solar maximum periods, the thermal structures of the Pacific upper water in boreal winter are featured by larger magnitude of centennial fluctuations at surface western tropical Pacific and at subsurface subtropical North Pacific relative to other parts of Pacific. Related centennial changes of zonal and meridional thermal gradients in surface and subsurface Pacific show different spectrum distributions.
(Wang Y. et al., 2013, CSB)
==============================================
Precessional forced paleoclimate evolutions in the Asian-Pacific-Indian Ocean regions
作为地球表层气候系统的能量来源,太阳短波辐射变化驱动着地质历史中的气候变迁。万年以上时间尺度上,地球轨道参数变化(特别是岁差)显著地调控地球接收到的太阳辐射的空间-季节分布格局。这种轨道周期上的太阳辐射异常不仅通过高纬冰盖的增长-缩小造成地球气候的冰期-间冰期旋回,而且直接导致中-低纬海-陆-气耦合过程的剧烈变动,例如亚洲季风强度变化、热带太平洋的厄尔尼诺-南方涛动(ENSO)的长周期响应等。岁差周期上的亚洲夏季风演变不仅与亚洲-太平洋之间的中-上对流层热力梯度(亚洲-太平洋涛动,APO)高度相关,还可能对应有热带印度洋的纬向偶极子模态(IOD)的岁差周期波动,而东亚冬季风也可能和中纬度北太平洋过程(北太平洋模态,NPM)密不可分,这些都是研究岁差周期上太平洋ENSO响应的前提。我们的研究侧重探索岁差辐射量变化驱动下,APO、IOD和NPM的长时间尺度演变特征,试图揭示亚印太区域的海陆气耦合过程对瞬变太阳辐射的响应方式与机制所在。
As the main energy source of the earth’s surface climate, shortwave radiation from the solar can induce climatic evolutions at geological history. At timescales longer than ten thousand years, the orbital parameters of the earth (especially the precession) can significantly modulate the spatial-seasonal patterns of solar radiation at the top of atmosphere. These solar radiation anomalies at orbital timescales not only resulted in the glacial-interglacial cycles of the earth through the advance-regression of ice-sheet at high latitudes, but also directly compelled drastic variations of air-land-ocean system at middle-low latitudes, in which the El Nino-Southern Oscillation (ENSO) of the tropical Pacific, the zonal dipole mode of the tropical Indian Ocean (IOD) and the Asian monsoon interact with the extratropical North Pacific mode (NPM) and the Asian-Pacific oscillation (APO) through “Atmospheric bridge” or “Oceanic tunnel”. We use different air-ocean coupled climate models of different complexities to investigate the paleoclimate evolutions in the Asian-Pacific-Indian Ocean regions at the precessional band, which can be listed as follows:
East Asian summer monsoon (EASM) and associated APO (Asian-Pacific Oscillation)
Firstly, in a 46-kyrs’ transient accelerated simulation with the NCAR Community Climate System Model version 3 (CCSM3) under orbital insolation forcing, the atmospheric results are analyzed to reveal the non-uniform evolution of Asian summer monsoon at precessional bands, including synchronous circulation/wind anomalies over East Asia and out-of-phase precipitation seesaw between the northern and the southern part of China, and their physical mechanism from extratropical mid-upper troposphere (named APO) (2012-7-2-王跃-poster-CESS2). Then we detailed the relative roles of land- and ocean-atmosphere interactions in the precessional forced paleo-APO and associated East Asian summer monsoon using a 300-kyrs’ transient accelerated simulation of the Community Earth System Model (CESM). In phased with a precession parameter minimum, the enhanced EASM is associated with a seesaw of the summer middle-upper tropospheric eddy temperature between Asia and the North Pacific (named positive paleo-APO), which is mainly a response of the land-atmosphere interaction to the increased boreal summer insolation.
我们利用过去46kyr/300kyr以来的轨道参数变化,加速驱动CCSM3/CESM)完全海气耦合模式,着重分析模式中夏季大气的瞬变响应,揭示了岁差周期上亚洲夏季风的非同步演化特征(亚非夏季风区的表层风场整体增强、东亚夏季降雨量呈现南北反位相变化),并发现上述岁差驱动的大气环流和夏季风降雨变化可以用热带以外中-上对流层的纬向热力梯度机制(即亚洲-太平洋涛动,APO)进行解释。单独CAM4模式(CESM的大气分量)的敏感性试验表明,岁差周期上东亚夏季风和古APO主要是陆地-大气相互作用对夏季辐射量增加的响应,海气相互作用的响应仅具有次级影响。
Relative Role of land- and ocean-atmospheric interactions in APO&EASM
In a 250-kyr transient simulation of the Community Earth System Model (CESM), we identified a precessional forced seesaw of the summer middle-upper tropospheric eddy temperature between Asia and the North Pacific as the paleo-APO (Asian-Pacific oscillation). The paleo-APO variability is out of phase with the precession parameter. Corresponding to a positive paleo-APO phase, both the subtropical anticyclonic circulation over the North Pacific and the East Asian summer monsoon (EASM) strengthen, and there is less precipitation between the Yangtze and Yellow Rivers and more precipitation over southeastern and northern China during June-July-August (JJA).
The variations in the simulated paleo-APO and East Asian southerly wind at the precessional band agree well with the stalagmite δ18O reconstructions at the Dongge, Sanbao-Linzhu (S_L), and Hulu caves in China, which also implies that these geological proxies may well reflect the variability in the southerly wind over East Asia. Since summer rainfall is also used as an important climatic factor behind the stalagmite δ18O reconstructions (with more rainfall corresponding to more negative δ18O), we further compared the model rainfall with those cave δ18O proxies in the EASM region. The maximums of the simulated JJA rainfall are in good agreement with the negative peaks in δ18O at the Dongge cave and are out of phase with those at the S_L cave and Hulu caves. This result implies that at the precessional band, while the integrated water vapor (with lower δ18O values) transported by the enhanced southerly winds can be used to explain the negative δ18O shifts in the EASM region, amount of local precipitations may also largely contribute to the negative δ18O peaks at the Dongge cave. The relative contributions of precipitation and wind circulation to stalagmites δ18O in different EASM regions should be addressed in future work.
Equilibrium experiments with both CESM and CAM4 further show that the response of the land-atmosphere coupling system alone to the precessional insolation forcing dominates the variations in the paleo-APO and the associated EASM circulation and rainfall anomalies, whereas the effect of ocean-atmosphere interactions on the paleo-APO is secondary. Moreover, a positive phase of the precessional forced paleo-APO is closely associated with a zonal positive-negative-positive pattern of June-July-August SST in the tropical Pacific and a western cold-eastern warm pattern of SST in the extratropical North Pacific. This relationship between the paleo-APO and the tropical Pacific SST is different from that of the modern climate, which may indicate a different relationship between EASM and ENSO.
Indian Ocean Dipole
The Indian Ocean Dipole (IOD)is one of the most significant tropical air-sea coupled phenomenon with a weakening or strengthening of the climatological sea surface temperature (SST) gradient (western cold-eastern warm) across the basin of the Indian Ocean. A positive phase of IOD is normally characterized by negative SST anomalies in the equatorial southeastern Indian Ocean and positive SST anomalies in the equatorial western Indian Ocean. Using the CESM model outputs under the transient orbital insolation forcing since 300 ka, we identified an IOD-like SST’ pattern in the tropical Indian Ocean at precessional band and named it the paleo-IOD. In line with a minimum of the precessional parameter, a positive paleo-IOD state is characterized by a western warm-eastern cold seesaw of SST’ across the equatorial Indian Ocean from August to October. This zonal SST’ seesaw can extend to the subsurface ocean between 60 and 80 m and is associated with stronger upwelling in EIO. A comparison between the model Dipole Mode Index (DMI) and the paleoceanographic reconstructed DMI based on the UK37- SST proxy shows the good consistency at precessional band.
我们利用过去300kyrs的岁差太阳辐射量变化驱动CESM模式进行瞬变加速模拟,识别出岁差周期上(23kyrs)热带印度洋SST的纬向偶极子型异常格局,并将其命名为古IOD(paleo-IOD)。当古IOD平均状态进入岁差周期上的正位相时(例如10-8ka的岁差参数极小值期),北半球夏-秋季(8月-10月)赤道印度洋西部SST异常偏暖、降雨量增加,热带东印度洋SST异常偏冷、降雨量减少。这种热带印度洋表层的纬向热力跷跷板格局可以向下延伸至60m-80m水深的次表层大洋,并伴有热带东印度洋海洋上升流的显著增强。相关的北半球夏-秋季对流层大气环流异常表现为如下特征:西印度洋上升运动异常增强,热带东南印度洋下沉运动异常增强,赤道印度洋表层盛行东风异常。正位相的古IOD平均状态很大程度上源自夏季岁差辐射量增加所驱动的局地海气相互作用,同时冬季岁差辐射量减少也可以通过“海洋热记忆效应”影响到夏-秋季SST,从而增强与正位相的古IOD相关的纬向SST跷跷板格局。我们模拟的偶极子模态强度指数(DMI)与基于古海洋学UK37-SST指标重建的DMI在岁差周期上存在很好的一致性。
East Asian winter monsoon and associated NPM (North Pacific mode)
In the modern climate, the extratropical North Pacific is characterized by a zonal seesaw of sea surface temperature (SST) during boreal winter and spring and this seesaw pattern is called the North Pacific mode (NPM). In a positive phase of NPM, there are negative anomalies of SST in the western-central part of the North Pacific and a horseshoe-like warming over the other parts of the North Pacific. The SST variability over the North Pacific associated with a positive phase of NPM may be forced by atmospheric anomalies with a enhanced Aleutian low and stronger westerly winds in midlatitudes. These anomalies on the interdecadal timescales are also called the Pacific Decadal Oscillation. We utilized the output of the transient accelerated simulation from CESM under the orbital insolation forcing since 300ka, and found that in responses to both a decreasedwinter insolation and an increased summer insolation, extratropical SST exhibits an NPM-like positive phase with colder SST in the Northwest Pacific and warmer SST in the Northeast Pacific from November to April. And there is an enhanced Aleutian low at the surface and decreased southerly winds and rainfall/snowfall appear over the eastern coasts of the Asian continent, indicating a stronger East Asian winter monsoon.2014-7-4-王跃-poster-CESS3
从CESM模式的瞬变加速模拟和平衡态模拟中,我们识别出热带以外北太平洋海气耦合系统对岁差周期上太阳辐射量变化的响应模态,并将其命名为北太平洋模态(NPM)。相对于岁差参数极大值期(如22ka和0ka),10-8ka时的岁差参数减小将导致北半球冬季辐射量减少、夏季辐射量增加,NPM呈正位相格局:12月至4月份热带以外北太平洋表层海水温度(SST)异常呈西冷-东暖的纬向跷跷板格局,同时冬季阿留申低压增强,对流层出现异常气旋环流。中纬度北太平洋上空的对流层扰动大气温度异常和扰动位势高度异常构成了准正压的冷-槽式响应结构。东亚大陆和西北太平洋冬季降雨量减少,指示东亚冬季风增强;东北太平洋和北美西部沿岸冬季降雨量增加。
Upper Figure: EOF1 results of Pacific SST associated with NPM (replotted using outputs of300 kyr’sCESMsimulation, which is an updated version of the 46 kyr’sCCSM3 simulation inWang Y. et al., 2014, JGR)
Lower Figure: Boreal winter atmospheric anomalies associated with a positive NPM phase(replotted using outputs of300 kyr’sCESMsimulation, which is an updated version of the 46 kyr’sCCSM3 simulation inWang Y. et al., 2014, JGR)



相关话题/同济大学 海洋