删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

新能源电力系统中的分布式光伏净负荷预测

本站小编 Free考研考试/2022-02-12

閻庢鍠掗崑鎾绘⒑椤愶絿顣叉繝鈧幍顔惧崥婵顦糚闂佹寧绋掗惌顔剧博鐎涙ḿ鈻旈柛銉㈡櫓濞兼岸鏌ら弶鍨殶闁绘牜鍎ょ粙澶愬箻閼碱剛鎳濋柣鐘叉处瀹曟﹢锝炵€n偓绱i柟杈鹃檮椤撶懓銆掑铏《婵犫偓閸涘瓨鏅悘鐐插⒔濡层劑鏌¢崼顐㈠幐缂佹顦靛畷姘紣娴d警浼囬梺鍛婂笒濡繈骞愰崼鏇熸櫖濞达綀娅i崡婊堟倵閻㈠灚鍤€闁搞劍绻勭划璇参旂€n剛锛�
547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤€閰i幊鎾诲礃椤忓棗鐓涢梺鍏兼緲閸燁偄鐣烽敓锟�1130缂備礁顦粔鐢碘偓鍨皑閳ь剝顫夌喊宥夊汲閳ь剟鏌℃径瀣婵炲牊鍨垮畷锟犲礃瑜忕粙鍥╃磼婢跺﹦效闁告ǜ鍊栫缓钘壩旈崪浣规瘜闁圭厧鐡ㄩ幐鍫曞焵椤戞寧绁版い顐㈩儐閿涙劙骞嬮婊咁槷濠电偞鍨归弫绋棵烘繝鍥ㄥ殣閺夊牜鍋掗崵鏃堟煏閸℃洝鍏岀紒顔光偓瓒佽鎯斿☉鎺戜壕濞达絿鏅Σ鍫ユ煕閹烘挻鍋犻柍褜鍏涚欢姘跺闯妤e啯鎳氱€广儱鍟犻崑鎾存媴閻戞ê鈧偟鈧鎮堕崕顖炲焵椤戣儻鍏屾い鎾存倐閹爼宕遍幇銊ヤ壕濞达絾浜芥禒锕€霉閸忕厧鎼搁柍褜鍏涘ù鍥磼閵婏箑顕辨慨妯稿劗閸嬫挻鎷呯憴鍕暚闂佺厧寮惰ぐ鍐紦妤e啯鍋犻柛鈩冨姀閸嬫挻鎷呴悿顖氬箑闂佸搫鍊稿ú銏ゅ焵椤戞寧绁板瑙勬崌瀵敻顢涘Ο宄颁壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾村閸嬫挻鎷呴崷顓溾偓濠囨倵濞戝疇绀嬮柍褜鍏涚粈浣轰焊閹殿喒鍋撳☉瀹犵闁逞屽厸濞村洭顢橀崫銉т笉婵°倓鐒︾花姘舵煏閸℃洜顦︾€圭ǹ顭峰畷锝囦沪閸屾浜惧ù锝呮啞閸曢箖鏌i悙鍙夘棑闁逞屽厸閻掞箓寮崒姘f煢婵懓娲犻崑鎾存媴閸涘﹥鍣搁柣搴㈠喕鐠愮喖鍩€椤戞寧顦风紓宥咁儔閹虫牠鎳犻鍐炬蕉缂備焦鍐婚幏锟�28缂備緡鍋夐褔顢楅悢铏圭煋闁规惌鍨崇壕锟�
廖启术1, 胡维昊1(), 曹迪1, 黄琦1,2, 陈哲3
1.电子科技大学 机械与电气工程学院, 成都 611731
2.成都理工大学 核技术与自动化工程学院,成都 610051
3.奥尔堡大学 能源系, 奥尔堡 DK-9110,丹麦
收稿日期:2021-07-07出版日期:2021-12-28发布日期:2021-12-30
通讯作者:胡维昊E-mail:whu@uestc.edu.cn

基金资助:廖启术(1998-),男,湖南省益阳市人,硕士生,主要从事可再生能源负荷和发电预测研究.

Distributed Photovoltaic Net Load Forecasting in New Energy Power Systems

LIAO Qishu1, HU Weihao1(), CAO Di1, HUANG Qi1,2, CHEN Zhe3
1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2. College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610051, China
3. Department of Energy Technology, Aalborg University, Aalborg DK-9110, Denmark
Received:2021-07-07Online:2021-12-28Published:2021-12-30
Contact:HU Weihao E-mail:whu@uestc.edu.cn






摘要/Abstract


摘要: 为响应碳达峰、碳中和的需求,构建一套完整的“源-网-荷-储”的新能源电力系统,提出了一种基于Hamiltonian Monte Carlo推断深度高斯过程(HMCDGP)算法的分布式光伏净负荷预测模型.首先,分别使用直接预测和间接预测两种形式对预测模型的精度进行实验并得到点预测结果;其次,使用所提出的模型进行概率预测实验并得到区间预测结果;最后,通过以澳洲电网记录的300户净负荷数据为基础的对比实验验证所提模型的优越性.在得到准确的净负荷概率预测后,可以通过电力调度充分利用光伏产出,减少化石能源使用,从而减少碳排放.
关键词: 净负荷概率预测, 光伏产出, 深度高斯过程, 点预测, 区间预测
Abstract: To respond to the demand of achieving carbon peaking and carbon neutrality goals, and to construct a complete “source-grid-load-storage” new energy power system, a distributed photovoltaic net load forecasting model based on Hamiltonian Monte Carlo inference for deep Gaussian processes (HMCDGP) is proposed. First, direct and indirect forecasting methods are used to examine the accuracy of the proposed model and to obtain spot forecasting results. Then, the proposed model is used to perform probability forecasting experiments and produce interval prediction results. Finally, the superiority of the proposed model is verified through the comparative experiments based on the net load data of 300 households recorded by Australia Grid. After obtaining the exact net load probabilistic forecasting results, the photovoltaic production can be fully utilized via power dispatch, which can reduce the use of fossil energy and further reduce the carbon emission.
Key words: net load forecasting, photovoltaic production, deep Gaussian process, point forecasting, interval prediction


PDF全文下载地址:

点我下载PDF
相关话题/概率 实验 过程 能源 电子科技大学