上海大学 土木工程系, 上海 200444
作者简介:
李春祥 (1964-),男,安徽省舒城市人,教授,博士生导师,研究方向为风荷载模拟预测.电话(Tel.):021-56332265; E-mail:li-chunxiang@vip.sina.com.基金资助:
国家自然科学基金资助项目(51378304)Interpolation Prediction and Extrapolation Prediction of Non-Gaussian Spatial Wind Pressure Using LSSVM with Wavelet Kernel Function
LI Chunxiang,YIN XiaoDepartment of Civil Engineering, Shanghai University, Shanghai 200444, China
摘要/Abstract
摘要: 支持向量机(SVM)的性能取决于核函数及核参数的选取.基于小波分析理论构造出满足Mercer平移不变核定理的Mexican Hat小波核函数(MW),将MW和B样条核函数分别与最小二乘支持向量机(LSSVM)结合,形成MW-LSSVM和BS-LSSVM.运用粒子群(PSO)算法对MW-LSSVM和BS-LSSVM的正则化参数及核参数进行智能优化,建立了PSO-MW-LSSVM和PSO-BS-LSSVM的空间风压预测算法.实测风压预测结果表明,MW-LSSVM比BS-LSSVM和传统的径向基核函数RBF-LSSVM具有更好的非高斯风压预测性能及泛化能力,而且稳定性更强,具有较高的工程应用价值.
关键词: 小波核函数, 样条核函数, 最小二乘支持向量机, 风压预测, 粒子群算法
Abstract: The performance of support vector machine depends on the selection of kernel functions and kernel parameters. The Mexican Hat wavelet kernel function is constructed based on the wavelet analysis theory which could satisfy the Mercer conditions. Further, the Mexican Hat wavelet kernel function and the B-spline kernel are combined with the LSSVM respectively and accordingly MW-LSSVM and BS-LSSVM are proposed. Subsequently, optimizations for penalty parameters and kernel parameters are conducted using particle swarm optimization (PSO) and thus the PSO-MW-LSSVM and PSO-BS-LSSVM algorithms are proposed for spatial wind pressure prediction. The numerical analysis shows that the proposed method not only significantly outperforms the conventional RBF-LSSVM and BS-LSSVM in forecasting accuracy and generalization ability, but also has great engineering application prospects due to its stability.
Key words: wavelet kernel function, spline kernel function, least square support vector machine, wind pressure prediction, particle swarm
PDF全文下载地址:
点我下载PDF