删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于机器学习的轻度认知功能障碍筛查研究

本站小编 Free考研考试/2022-02-12

閻庢鍠掗崑鎾绘⒑椤愶絿顣叉繝鈧幍顔惧崥婵顦糚闂佹寧绋掗惌顔剧博鐎涙ḿ鈻旈柛銉㈡櫓濞兼岸鏌ら弶鍨殶闁绘牜鍎ょ粙澶愬箻閼碱剛鎳濋柣鐘叉处瀹曟﹢锝炵€n偓绱i柟杈鹃檮椤撶懓銆掑铏《婵犫偓閸涘瓨鏅悘鐐插⒔濡层劑鏌¢崼顐㈠幐缂佹顦靛畷姘紣娴d警浼囬梺鍛婂笒濡繈骞愰崼鏇熸櫖濞达綀娅i崡婊堟倵閻㈠灚鍤€闁搞劍绻勭划璇参旂€n剛锛�
547闂佸湱顣介崑鎾绘⒒閸曗晛鐏柣妤€閰i幊鎾诲礃椤忓棗鐓涢梺鍏兼緲閸燁偄鐣烽敓锟�1130缂備礁顦粔鐢碘偓鍨皑閳ь剝顫夌喊宥夊汲閳ь剟鏌℃径瀣婵炲牊鍨垮畷锟犲礃瑜忕粙鍥╃磼婢跺﹦效闁告ǜ鍊栫缓钘壩旈崪浣规瘜闁圭厧鐡ㄩ幐鍫曞焵椤戞寧绁版い顐㈩儐閿涙劙骞嬮婊咁槷濠电偞鍨归弫绋棵烘繝鍥ㄥ殣閺夊牜鍋掗崵鏃堟煏閸℃洝鍏岀紒顔光偓瓒佽鎯斿☉鎺戜壕濞达絿鏅Σ鍫ユ煕閹烘挻鍋犻柍褜鍏涚欢姘跺闯妤e啯鎳氱€广儱鍟犻崑鎾存媴閻戞ê鈧偟鈧鎮堕崕顖炲焵椤戣儻鍏屾い鎾存倐閹爼宕遍幇銊ヤ壕濞达絾浜芥禒锕€霉閸忕厧鎼搁柍褜鍏涘ù鍥磼閵婏箑顕辨慨妯稿劗閸嬫挻鎷呯憴鍕暚闂佺厧寮惰ぐ鍐紦妤e啯鍋犻柛鈩冨姀閸嬫挻鎷呴悿顖氬箑闂佸搫鍊稿ú銏ゅ焵椤戞寧绁板瑙勬崌瀵敻顢涘Ο宄颁壕濞达綀顫夐悡鈧梻鍌氬€介濠勬閸洖绠绘い鎾村閸嬫挻鎷呴崷顓溾偓濠囨倵濞戝疇绀嬮柍褜鍏涚粈浣轰焊閹殿喒鍋撳☉瀹犵闁逞屽厸濞村洭顢橀崫銉т笉婵°倓鐒︾花姘舵煏閸℃洜顦︾€圭ǹ顭峰畷锝囦沪閸屾浜惧ù锝呮啞閸曢箖鏌i悙鍙夘棑闁逞屽厸閻掞箓寮崒姘f煢婵懓娲犻崑鎾存媴閸涘﹥鍣搁柣搴㈠喕鐠愮喖鍩€椤戞寧顦风紓宥咁儔閹虫牠鎳犻鍐炬蕉缂備焦鍐婚幏锟�28缂備緡鍋夐褔顢楅悢铏圭煋闁规惌鍨崇壕锟�

摘要/Abstract


摘要: 目的 ·评价项目研制的可用于轻度认知功能障碍筛查的电子化认知评估系统的信度和效度,构建机器学习法判定模型并评估筛查效果。方法 ·采用分层随机的方法在上海和河南农村的社区、老年护理院及专科门诊抽取 55岁以上的符合标准的老年人,由经过严格培训、操作规范的调查员对研究对象进行蒙特利尔认知评估量表( Montreal Cognitive Assessment,MoCA)的现场测试。电子化认知评估系统信度评价采用内部一致性系数,效度评价采用因子分析;以 MoCA评估结果作为标准,使用分类准确率和曲线下面积(area under curve, AUC)比较朴素贝叶斯、随机森林、 Logistic回归和 K-邻近 4种机器学习算法的分类效果。结果 ·研究的 359名对象中,年龄中位数为 63岁,82.80%为中学及以下学历;根据 MoCA评分,可能患有轻度认知功能障碍的有 147名。电子化认知评估系统的 Cronbachs α为 0.84,KMO为 0.78,Bartletts球形检验 P<0.05,共提取 13个公因子,累计方差贡献率为 75.10%。最优朴素贝叶斯分类模型的分类准确率为 88.05%,AUC为 0.941。结论 ·该电子化认知评估系统具有良好的信度、效度及分类效果,利用朴素贝叶斯分类模型分类准确度较高。
关键词: 轻度认知功能障碍, 电子化认知评估系统, 机器学习, 朴素贝叶斯分类模型, 蒙特利尔认知评估量表, 筛查
Abstract:
Objective · To evaluate the reliability and validity of a computerized cognitive assessment system designed for screening mild cognitive impairment (MCI), and compare the screening accuracy among constructed different machine learning classification models. Methods · A group of random stratified samples of over 55 years old residents in the communities, nursing homes and memory-clinics Shanghai and Henan were selected to assess their cognitive status using Montreal Cognitive Assessment (MoCA)well-trained investigators. The reliability and validity were assessedintrinsic consistency analysis and factor analysis, respectively. Taking the results of MoCA as standards, four machine learning classification algorithms, i.e., na.ve Bayesian classification model, random forest classifier, Logistic regression classifier, and K-nearest neighbor classifier, were compared in accuracy and area under curve (AUC). Results · A total of 359 participants were included, the median age of whom was 63 years old. And 82.80% of them were secondary school graduates or below. According to the results of MoCA, 147 of them might be MCI. The Cronbachs α and KMO of this system were 0.84 and 0.78, respectively; Bartletts sphericity test was significant (P<0.05); thirteen common factors could explain 75.10% of the system. The best classification model was na.ve Bayesian classification model, and its accuracy andAUC were 88.05% and 0.941, respectively. Conclusion · The new designed computerized cognitive assessment system has been proved to be reliable and valid. The na.ve Bayesian classification model has good classification accuracy.
Key words: mild cognitive impairment (MCI), computerized cognitive assessment system, machine learning, na.ve Bayesian classification model, Montreal Cognitive Assessment (MoCA), screening


PDF全文下载地址:

点我下载PDF
闂佺粯鍔楅幊鎾诲吹椤斿墽鍗氶悗锝庝簻缁侇噣鏌熼崗鑲╃煂闁稿矉鎷�2婵炴垶鎸稿ú銊╋綖閹烘鍤€闁告劦浜為崺锟犳煟閵忋倖娑ч柣鈩冪懇閹囧醇閿濆洢鍋掗梺鍝勫€归悷杈╂閿燂拷
婵犮垹鐖㈤崶褍濮ら梺鍛婂笒濡盯顢旈姀銈嗩棄閻庯綆鍠栭崢鎾煛閸曢潧鐏fい鎴濇处缁嬪鍩€椤掆偓閳诲酣妾遍柍褜鍓欓崯浼存偉濞差亝鏅悘鐐电摂閸ょ姴霉濠婂啴顎楁い鈹嫭濯撮柡鍥╁枔閸欌偓闂佸綊娼цぐ鐐电箔閹惧鈻旀慨妯诲墯閸わ箓鏌熺粙鎸庢悙闁伙綁绠栧顐⑩枎閹邦厾绋勯梺鎸庣☉閺堫剟宕归妸褎濯奸柛娑橈攻缁犳帞鈧灚婢橀悧鍡浰囬崸妤佸仾闁硅揪闄勯敍鏍煏閸℃洖顣╮ee婵犮垹缍婇埀顒佺⊕閵嗗啴鏌涢幒鎴烆棞妞ゆ帞鍠愮粙濠囨偐閻㈢數效闂佸吋婢橀崯浼存偉閸濆媱搴㈡綇椤愮喎浜鹃柡鍥ㄦ皑閻熲晛鈽夐幘缈犱孩妞ゆ洝娅曞ḿ蹇涘川椤撗冩20濡ょ姷鍋犻幓顏嗘濠靛绠戦柤濮愬€楀▔銏犆瑰⿰鍐╊棥缂佸顕埀顒€婀遍崑鐔煎极閵堝鍎嶉柛鏇ㄥ墮閻﹀綊鎮楃憴鍕暡闁哄棌鍋撻梺鍝勵槹閸旀牠鎮¢敍鍕珰闁靛繆鍓濋悡娆愮箾婢跺绀€鐎殿噣鏀卞鍕吋閸曨厾妲戦梺鍝勫€介~澶屾兜閸洘鏅悘鐐靛亾缁犳帡姊婚崶锝呬壕闁荤喐娲戦懗璺衡枔閹达附鍎戦悗锝庡幘缁犳牠鏌℃径娑欏
相关话题/系统 测试 农村 检验 护理