删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学机械与动力工程学院导师教师师资介绍简介-吴慧英

本站小编 Free考研考试/2021-01-01


吴慧英 教授
所在系所工程热物理研究所
办公电话
通讯地址上海交大机械与动力工程学院A楼411室
电子邮件whysrj@sjtu.edu.cn
个人主页http://me.sjtu.edu.cn 欢迎有志青年报读博士后(年薪不低于25万元)、博士(年薪不低于5.6万元)、硕士!


教育背景 1993-1997东南大学热能工程专业博士
1990-1993东南大学热能工程专业硕士
1986-1990东南大学工程热物理专业学士

工作经历 1997-1999 上海交通大学动力与能源工程学院  博士后
1999-2003 上海交通大学动力与能源工程学院 副教授
2000-2003 香港科技大学机械工程系 访问****
2004- 上海交通大学机械与动力工程学院 教授、博导
2004- 上海交通大学微流与热控研究中心 副主任
2005- 上海交通大学工程热物理研究所 副所长
2010- 上海交通大学 ****
2013- 上海交通大学 二级教授

研究方向 1、 先进微电子芯片冷却理论与技术
2、 先进微能源动力系统与多相流技术
3、 高效热质传递理论与能量蓄存技术
4、 微纳尺度流体流动与传热传质

科研项目 主要负责项目:
2019-2023 国家自然科学基金重点国际合作项目,“三维堆叠芯片高效相变冷却关键科学问题研究”,负责人
2016-2020 国家自然科学基金重点项目,“微纳系统中粒子-流体输运机制及热质传递规律研究”,负责人
2010-2013 国家****科学基金项目,“基于无源和有源方式的集成微纳系统高效热质传递理论与技术”,负责人
2012-2016 国家重点基础研究项目(973课题),“气相余热高效梯级储存与转换的理论和方法”,负责人
2014-2017 国家自然科学基金面上项目,“复杂多孔介质中固液相变的格子Boltzmann方法及模拟”,负责人
2013-2015 上海科委基础研究重点项目,“微尺度体系内介质的高效混合/分离动力学行为、方法及调控机理的研究”,负责人
2012-2014 教育部博士点基金项目,“集成纳米流体和强化微通道网络的3D堆叠芯片冷却技术基础研究”,负责人
2011-2013 上海市优秀学术带头人计划项目,“微纳系统中复杂介质在复杂结构中的高效传输机理与方法”,负责人
2009-2011 上海市曙光计划跟踪项目,“微纳系统高效热质传递理论与方法的研究”,负责人
2007-2009 教育部新世纪优秀人才项目,“新型高效微电子芯片散热理论和技术”,负责人
2008-2010 上海市教委科研创新重点项目,“集成纳微米器件流动与热控制理论和技术”,负责人
2008-2010 上海市人才发展资金资助项目,“纳微米器件自循环流动与热控制技术”,负责人
2005-2007 国家自然科学基金面上项目,“亚微米芯片通道中凝结流型演变、热力特性及非稳定振荡研究”,负责人
2005-2007 上海市曙光计划项目,“集成脉动式芯片热管热控制研究”,负责人
2003-2005 中港合作科研基金,“微型芯片凝汽器基础研究”,负责人
1997-1999 中国博士后科学基金,“层板热管理装置发汗冷却基础研究”,负责人
主参项目:
2016-2021 国家基金委创新群体项目,“传热传质与高效热力系统的基础研究”,排3
2006-2009 国家自然科学基金重点项目,“微/纳尺度条件下的流体流动与传热传质研究”,排2

代表性论文专著 发表论文200余篇,SCI他引3000余次,入选2014-2018年Elsevier中国高被引****,代表性论文:
Yao Y.P., Wu H.Y.*, Gao Z.S., Liu Z.Y., Pore-scale visualization and measurement of paraffin solidification in high porosity open-cell copper foam, International Journal of Thermal Sciences, 2019, 135: 94-103.
Yao Y.P., Wu H.Y.*, Liu Z.Y., Gao Z.S., Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam, International Journal of Thermal Sciences, 2018,123: 73-85.
Yao Y.P., Wu H.Y.*, Liu Z.Y., Direct simulation of interstitial heat transfer coefficient between paraffin and high porosity open-cell metal foam, Journal of Heat Transfer-Transactions of the ASME, 2018, 140(3): 032601.
Xu F.Y., Wu H.Y.*, Effect of pin-fins on the onset of flow instability of water in silicon-based microgap, International Journal of Thermal Sciences, 2018, 130: 496-506.
Xu F.Y., Pan Z.H., Wu H.Y.*, Experimental investigation on the flow transition in different pin fin arranged microchannels, Microfluidics and Nanofluidics, 2018, 22(1):11.
Xu F.Y., Wu H.Y.*, Liu Z.Y., Flow patterns during flow boiling instability in silicon-based pin-fin microchannels, Journal of Heat Transfer-Transactions of the ASME, 2018, 140(3): 031501.
Xu F.Y., Wu H.Y.*, Experimental study of water flow and heat transfer in silicon micro-pin-fin heat sinks, Journal of Heat Transfer-Transactions of the ASME, 2018,140(12): 122401.
Huang H.X., Wu H.Y.*, Zhang C., An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels, Journal of Micromechanics and Microengineering, 2018, 28: 055003.
Huang R.Z.*, Wu H.Y.*, Adams N.A.*, Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow, Physical Review E, 2018, 97: 053308.
Yuan C., Pan Z.H., Wu H.Y.*, Inertial migration of single particle in a square microchannel over wide ranges of Re and particle sizes, Microfluidics and Nanofluidics, 2018, 22(9): 102.
Pan Z.H., Zhang R.L., Yuan C., Wu H.Y.*, Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel, Physics of Fluids, 2018, 30(10): 102005.
Liu Z.Y., Zhou J. Wu H.Y.*, Non-isothermal slip flow over micro spherical particle at low Reynolds numbers, Chemical Engineering Science, 2018, 191: 19-30.
Liu Z.Y., Zhou J., Wu H.Y.*, New correlations for slip flow and heat transfer over a micro spherical particle in gaseous fluid, Powder Technology, 2018, 338: 129-139.
Zhao K.W., Wu H.Y.*, The fountain effect of ice-like water across nanotube at room temperature, Physical Chemistry Chemical Physics, 2017, 19(42): 28496 - 28501.
Zhao K.W., Wu H.Y.*, Han B.S., Negative effect of nanoconfinement on water transport across nanotube membranes, Journal of Chemical Physics, 2017, 147(16):164705.
Yao Y.P., Wu H.Y.*, Liu Z.Y., Pore scale investigation of heat conduction of high porosity open-cell metal foam/paraffin composite, Journal of Heat Transfer-Transactions of the ASME, 2017, 139(9): 091302.
Wang H.R., Liu Z.Y., Wu H.Y.*, Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array, Energy, 2017, 138: 739-751.
Gu J., Huang R.Z., Liu Z.Y., Wu H.Y.*, A new curved boundary treatment in lattice Boltzmann method for micro gas flow in the slip regime, Acta Physica Sinica, 2017, 66: 114701.
Qu J., Wu H.Y., Cheng P., Wang Q.,Recent advances in MEMS-based micro heat pipes, International Journal of Heat and Mass Transfer, 2017, 110: 294-313.
Huang R.Z., Wu H.Y.*, Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow, Journal of Computational Physics, 2016, 327: 121-139.
Huang R.Z., Wu H.Y.*, Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change, Journal of Computational Physics, 2016, 315: 65-83.
Hu D.H., Wu H.Y.*, Volume evolution of small sessile droplets evaporating in stick-slip mode, Physical Review E, 2016, 93(4): 042805.
Liu Z.Y., Wu H.Y.*, Numerical modeling of liquid-gas two-phase flow and heat transfer in reconstructed porous media at pore scale, International Journal of Hydrogen Energy, 2016, 41(28): 12285-12292.
Liu Z.Y., Wu H.Y.*, Pore-scale study on flow and heat transfer in 3D reconstructed porous media using micro-tomography images, Applied Thermal Engineering, 2016, 100: 602-610.
Liu Z.Y., Wu H.Y.*, Pore-scale modeling of immiscible two-phase flow in complex porous media, Applied Thermal Engineering, 2016, 93: 1394-1402.
Zhao K.Y., Wu H.Y.*, Fast water thermo-pumping flow across nanotube membranes for desalination, Nano Letters, 2015, 15: 3664-3668.
Huang R.Z., Wu H.Y.*, Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change, Journal of Computational Physics, 2015, 294: 346-362.
Zhao K.Y., Wu H.Y.*, Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation, Physical Chemistry Chemical Physics, 2015, 17: 10343-10347.
Hu D.H., Wu H.Y.*, Numerical study and predictions of evolution behaviors of evaporating pinned droplets based on a comprehensive model, International Journal of Thermal Sciences, 2015, 96: 149-159.
Yao Y.P., Wu H.Y.*, Liu Z.Y., A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams, International Journal of Thermal Sciences, 2015, 97: 56-67.
Huang R.Z., Wu H.Y.*, Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field, Physical Review E, 2015, 91: 033302.
Hu D.H., Wu H.Y.*, Liu Z.Y., Effect of liquid-vapor interface area on the evaporation rate of small sessile droplets, International Journal of Thermal Sciences, 2014, 84: 300-308.
Huang R.Z., Wu H.Y.*, A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation, Journal of Computational Physics, 2014, 274: 50-63.
Huang R.Z., Wu H.Y.*, An immersed boundary-thermal lattice Boltzmann method for solid–liquid phase change, Journal of Computational Physics, 2014, 277: 305-319.
Zhou D.Q., Wu H.Y.*, A thermal conductivity model of nanofluids based on particle size distribution analysis, Applied Physics Letters, 2014, 105(8): 083117-083121.
Huang R.Z., Wu H.Y.*, Multiblock approach for the passive scalar thermal lattice Boltzmann method, Physical Review E, 2014, 89(4): 043303.
Huang R.Z., Wu H.Y.*, Cheng P, A new lattice Boltzmann model for solid-liquid phase change, International Journal of Heat and Mass Transfer, 2013, 59: 295-301.
Liu Z.Y., Wu H.Y.*, Steady-state and transient investigation of primary surface recuperator for microturbines, Heat Transfer Engineering, 2013, 34(10): 875-886.
Liu Z.Y., Yao Y.P., Wu H.Y.*, Numerical modeling for solid-liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage, Applied Energy, 2013, 112: 1222-1232.
Zhao K.W., Wu H.Y.*, Size effects of pore density and solute size on water osmosis through nanoporous membrane, Journal of Physical Chemistry B, 2012, 116(45): 13459-13466.
Qu J., Wu H.Y.*, Cheng P, Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes, International Journal of Heat and Mass Transfer, 2012, 55(21-22): 6109-6120.
Qu J., Wu H.Y., Wang Q., Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics, Nanoscale and Microscale Thermophysical Engineering, 2012, 16(1): 37-49.
Wu X.Y., Wu H.Y.*, Hu Y.D., Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shapede microchannels, Microfluidics and Nanofluidics, 2011, 11(1): 11-24.
Qu J., Wu H.Y.*, Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids, International Journal of Thermal Sciences, 2011, 50(10): 1954-1962.
Wu X.Y., Wu H.Y.*, High-efficiency magnetophoretic separation based on synergy of magnetic force field and flow field in microchannels, Science China: Technological Sciences, 2011, 54(12): 3311-3319
Qu J., Wu H.Y.*, Cheng P., Thermal performance of an oscillating heat pipe with Al2O3 - water nanofluids, International Communications in Heat and Mass Transfer, 2010, 37(2): 111-115.
Qu J., Wu H.Y.*, Flow visualization of silicon-based micro pulsating heat pipes, Science China: Technological Sciences, 2010, 53(4): 984-990.
Qu J., Wu H.Y.*, Cheng P., Non-linear analyses of temperature oscillation in a closed-loop pulsating heat pipe. International Journal of Heat and Mass Transfer, 2009, 52: 3481-3489
Wu X.Y., Wu H.Y.*, Cheng P., Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels. Journal of Micromechanics and Microengineering, 2009, 19(105020)
Wu H.Y.*, Wu X.Y., Wei Z., Flow friction and heat transfer of ethanol-water solutions through silicon microchannels, Journal of Micromechanics and Microengineering, 2009, 19(045005)
Wu H.Y.*, Wu X.Y., Qu J., Yu M.M., Condensation heat transfer and flow friction in silicon microchannels, Journal of Micromechanics and Microengineering, 2008, 18(115024)
Wu H.Y.*, Yu M.M., Cheng P., Wu X.Y., Injection flow during steam condensation in silicon microchannels, Journal of Micromechanics and Microengineering, 2007, 17: 1618-1627
Wu H.Y.*, Cheng P., Wang H., Pressure drop and flow boiling instabilities in silicon microchannel heat sinks, Journal of Micromechanics and Microengineering, 2006, 16: 2138-2146
Cheng P., Wu H.Y., Mesoscale and microscale phase change heat transfer, Advances in Heat Transfer, 2006, 39: 461-563.
Wu H.Y., Cheng P., Condensation flow patterns in silicon microchannels, International Journal of Heat and Mass Transfer, 2005, 48: 2186-2197
Wu H.Y., Cheng P., Boiling instability in parallel silicon microchannels at different heat flux, International Journal of Heat and Mass Transfer, 2004, 47: 3631-3641
Wu H.Y., Cheng P., Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios, International Journal of Heat and Mass Transfer, 2003, 46: 2519-2525
Wu H.Y., Cheng P., Visualization and measurements of periodic boiling in silicon microchannels, International Journal of Heat and Mass Transfer, 2003, 46: 2604-2614
Wu H.Y., Cheng P., An experimental study of convective heat transfer in silicon microchannels with different surface conditions, International Journal of Heat and Mass Transfer, 2003, 46: 2547-2556
Wu H.Y., Cheng P., Liquid/two-phase/vapor alternating flow during boiling in microchannels at high heat flux, International Communications in Heat and Mass Transfer, 2003, 30: 295-302
Wu H.Y., Cheng H.E., Shuai R.J., Zhou Q.T., An analytical model for decaying swirl flow and heat transfer inside a tube, Journal of Heat Transfer-Transactions of the ASME, 2000, 122: 204-208
Wu H.Y., Cheng H.E., Zhou Q.T., Compound enhanced heat transfer inside tubes by combined use of a spirally corrugated tubes and inlet axial vane swirlers, Journal of Enhanced Heat Transfer, 2000, 7: 247-257

教学工作 1、课程名称: 工程热力学
授课对象:本科生
学时数:48
学分:3
2、课程名称: 传热学
授课对象:本科生
学时数:48
学分:3
3、课程名称: 工程热物理学科前沿
授课对象:研究生
学时数:4

软件版权登记及专利 授权专利:
1. 吴慧英、郑平、刘恩光,集成微热沉系统及其制备方法,中国发明专利 ZL 6.3
2. 吴慧英、屈健、刘恩光,集成脉动芯片热管制备方法,中国发明专利 ZL 9.2
3. 吴慧英、屈健、刘恩光,具有功能表面的微型芯片热管阵列的制备方法, 中国发明专利 ZL 2.X
4. 胡定华、吴慧英、吴信宇,液滴内部热毛细流的操控方法,中国发明专利 ZL 4.5
5. 吴信宇、吴慧英、胡定华,具有散热能力的集成磁泳分离芯片及其制备方法,中国发明专利 ZL 3.6
6. 吴信宇、吴慧英、胡定华,微通道内利用低频间隙磁场强化微混合的方法,中国发明专利 ZL 3.X
7. 高泽世、吴慧英、李超,一种内置相变材料的蓄热热管,中国发明专利 ZL 5.6
8. 徐法尧、吴慧英、康宁, 微流控相变汽泡微泵阀及其方法, 中国发明专利 ZL 7.3
软件著作权:
1. 王慧儒、吴慧英,间隙性余热组合相变蓄热单元热设计软件,软件著作权,登记号 2013SR032720
2. 王慧儒、吴慧英,管壳式相变储能装置设计计算软件,软件著作权,登记号 2014SR104728
3. 王慧儒、吴慧英,平板式相变储能装置火积耗分析及优化软件,软件著作权,登记号 2015SR085621

学术兼职 1、中国高校工程热物理研究会副理事长(2012-)
2、中国工程热物理学会传热传质分会委员(2013-)
3、中国工程热物理学会多相流专委会委员(2015-)
4、中国力学学会多相流专业组委员(2013-)
5、第二届美国ASME微纳尺度传热传质国际会议地区组委会主席、分会主席
6、Int J Heat Mass Transfer、Int J Thermal Sci、Microfluidics Nanofluidics、J Computational Physics等国际期刊评审专家
7、教育部****评议专家
8、国家基金委重点、重点国际合作、****、优青类项目评议专家

荣誉奖励 科技奖励:
1、 国家自然科学二等奖(2007)
2、 上海市自然科学一等奖(2006)
3、 中国高校科技进步二等奖(2001)
荣誉称号:
1、 爱思唯尔中国高被引****(Elsevier Most Cited Chinese Researchers,2014-2018)
2、 上海交大凯原十佳教师(2018)
3、 上海市优秀学术带头人(2011)
4、 上海市巾帼创新奖(2010)
5、 国家****科学基金获得者(2009)
6、 全国巾帼建功标兵(2009)
7、 上海十大青年科技英才(2008)
8、 上海市曙光****跟踪计划获得者(2008)
9、 宝钢优秀教师奖(2008)
10、上海市人才发展资助奖励(2008)
11、教育部新世纪优秀人才(2006)
12、霍尼韦尔优秀教师奖(2005)
13、上海市曙光****(2004)
14、上海交大优秀博士后(2001)

相关话题/机械 上海交通大学