删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学船舶海洋与建筑工程学院导师教师师资介绍简介-王亮

本站小编 Free考研考试/2021-01-01


王亮 工程力学系
办公电话:**
电子邮件:wang_liang@sjtu.edu.cn
通讯地址:上海市东川路800号 木兰船建大楼 A802



个人简历 研究方向 学术兼职 科研项目 代表性论文及专著 软件版权登记及专利 荣誉和奖励
2020.09 - 至今 上海交通大学, 船舶海洋与建筑工程学院,长聘教轨副教授
2018.02 - 2020.03 美国迈阿密大学,机械与航空工程系,博士后
2016.11 - 2017.11 新加坡南洋理工大学,机械与航空工程系,博士后
2014.12 - 2015.12 美国西北大学,机械与土木工程系,联合培养博士
2011.09 - 2016.06 浙江大学,化工过程机械,博士
2006.09 - 2010.07 天津大学, 过程装备与控制工程,本科


1. 复合材料力学(Multiscale Mechanics of Composites )
2. 计算固体力学(Computational Solid Mechanics)




包括以下研究领域:复合材料多尺度力学:断裂力学数值计算方法;金属弹塑性损伤与疲劳;大变形板壳力学;先进材料与结构力学等。


----------------------招生信息-----------------------


招生专业:力学、机械、材料、土木等相关专业。
招收硕士和博士研究生,欢迎条件优秀且具有浓厚科研兴趣的青年学子加盟!




期刊服务:
Computer Modeling in Engineering and Science (CMES)副主编
期刊审稿人:
Composite science and technology; Composite part-A; Composite structures; Thin walled structure; International Journal of Applied Mechanics; Advances in Applied Mathematics and Mechanics等。




1. Micromechanical Failure Analysis of Aligned Low-Aspect Short Fiber Composite Materials for TFF,2019-2020,美国国防部高级研究计划局 (DARPA)资助,参与完成。
2. Augmented Finite Element Method for High-Fidelity Analysis of Structural Composites,2018-2019, 美国波音公司(Boeing)资助,参与完成。
3. Rolling Contact Fatigue Analysis For Predicting Crack Initiation And Propagation,2016-2017,新加坡NRF资助,参与完成。
4.复杂形状碳纤维复合材料承压壳体的结构设计与强度研究,2013-2014,浙江大学与斯坦福大学国际合作项目,参与完成。


SCI文章(通讯作者*
1. Xueshi Ma, Ke Xiong, Qingda Yang, Liang Wang*. Progress damage analysis and crack growth modelling in thin ply laminates using nonlinear augmented finite element method. Thin-Walled Structures, 2020. (In press).
2.Wang L, Yang Q D. 3D geometrically nonlinear augmented finite element method for arbitrary cracking in composite laminates[J]. Computers & Structures, 2020, 239: 106327.
3.Hu C, Yang Q, Ling D, Wang L*. Numerical simulations of arbitrary evolving cracks in soil structures using the nonlinear augmented finite element method. Mechanics of materials, 2020. (In press)
4.Liao X, Wang W, Wang L, et al. A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces[J]. Nano Energy, 2020: 105548.
5. Wang L, Ma X, Yang Q, et al. Nonlinear Augmented Finite Element Method (n-AFEM) for Arbitrary Cracking in Large Deformation Plates and Shells[J]. International Journal for Numerical Methods in Engineering, 2020,121:4509-4536.
6. Nygren G, Wang L, Yang Q, et al. Microstructural effects on failure modes in highly aligned short carbon fiber composites[J]. Polymer Composites, 2020, 41(10): 4288-4296.
7. Hu C, Ling D, Ren X, Gong S, Wang L, Huang Z. An improved crack-tip element treatment for advanced FEMs[J]. Theoretical and Applied Fracture Mechanics, 2020: 102587.
8. Hu C, Wang L, Ling D, et al. Experimental and Numerical Investigation on the Tensile Fracture of Compacted Clay[J]. Computer Modeling in Engineering & Sciences, 2020, 123(1): 283-307.
9. Wang L, Nygren G, Karkkainen R L, et al. A multiscale approach for virtual testing of highly aligned short carbon fiber composites[J]. Composite Structures, 2019, 230: 111462.
10. Wang L, Zhao B, Wu J, et al. Experimental and numerical investigation on mechanical behaviors of woven fabric composites under off-axial loading[J]. International Journal of Mechanical Sciences, 2018, 141: 157-167.
11. Liao X, Wang W, Wang L, et al. Controllably Enhancing Stretchability of Highly Sensitive Fiber-Based Strain Sensors for Intelligent Monitoring[J]. ACS applied materials & interfaces, 2018, 11(2): 2431-2440.
12. Wang B, Wang L*, Wu J, et al. Design and characterization of isothermal chambers filled with gradient-porous materials[J]. Journal of Thermal Science and Technology, 2017, 12(1): JTST0008-JTST0008.
13.Shin, G., Gomez, A. M., Al-Hasani, R., Jeong, Y. R., Kim, J., Xie, Z., Wang, L., et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics[J]. Neuron, 2017, 93(3): 509-521. e3.
14. Lee, Y. K., Jang, K. I., Ma, Y., Koh, A., Chen, H., Wang, L., et al. Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. Advanced Functional Materials,27(9):**.1-**.8, 2017.
15. Wang L, Wu J, Chen C, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures, 2017, 178: 395-405.
16. Yinji Ma, Matt Pharr, Liang Wang, Jeonghyun Kim, Yuhao Liu, Yeguang Xue, Rui Ning, Xiufeng Wang, Ha Uk Chung, Xue Feng, John A. Rogers, and Yonggang Huang. Soft elastomers with ionic liquid-filled cavities as strain isolating substrates for wearable electronics. Small,13(9):**, 2017.
17. Wang L, Wang B, Wei S, et al. Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure[J]. Composites Part B: Engineering, 2016, 97: 274-281.
18. Koh, A., Kang, D., Xue, Y., Lee, S., Pielak, R. M., Kim, J., Wang, L., et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 8(366):366ra165-366ra165, 2016.
19. Ma Y, Jang K I, Wang L, et al. Design of Strain Limiting Substrate Materials for Stretchable and Flexible Electronics. Advanced Functional Materials,26(29):5345-5351, 2016.
20. Wang L, Zheng C, Wei S, et al. Micromechanics-based progressive failure analysis of carbon ?ber/epoxy composite vessel under combined internal pressure and thermomechanical loading[J]. Composites Part B: Engineering, 2016, 89: 77-84.
21. Yihui Zhang, Zheng Yan, Kewang Nan, Dongqing Xiao, Yuhao Liu, Haiwen Luan, Haoran Fu, Xizhu Wang, Qinglin Yang, Jiechen Wang, Liang Wang, Yonggang Huang, and John A. Rogers. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. (PNAS) Proceedings of the National Academy of Sciences USA, 112(38): 11757-11764, 2015.
22. Wang L, Zheng C, Luo H, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures, 2015, 134: 475-482.
23. Wang B, Hong Y, Wang L, et al. Development and numerical investigation of novel gradient-porous heat sinks. Energy Conversion & Management, 106:1370-1378, 2015.
24. Wang L, Zheng C, Wei S, et al. Thermo-mechanical investigation of composite high-pressure hydrogen storage cylinder during fast filling[J]. international journal of hydrogen energy, 2015, 40(21): 6853-6859.
25. Li R, Zheng C, Chen B, Wang L, et al. Research on hydrogen environment fatigue test system and correlative fatigue test of hydrogen storage vessel. Journal of Shanghai Jiaotong University, 19: 88-94, 2014.
26. Wang L, Zheng C, Li R, et al. Numerical analysis of temperature rise within 70 MPa composite hydrogen vehicle cylinder during fast refueling[J]. Journal of Central South University, 2014, 21(7): 2772-2778.
27. Zheng C, Wang L*, Li R, et al. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(6): 393-400.
中文文章
28. 郑传祥, 王亮*, 魏双, 王柏村. 基于微观力学的复合材料气瓶爆破强度研究.工程设计学报, 2016, 23(5):461~467.
29. 郑传祥, 陆希, 王亮, 吴嘉懿. 碳纤维复合材料卫星杆件优化设计. 高科技纤维与应用, 2016, 41(4) : 23-27.
30. 郑传祥, 魏双, 陆希, 王亮, 吴嘉懿. 基于微观力学失效分析对碳纤维复合材料支架杆件的优化设计. 高科技纤维与应用, 2016,41(1): 29-33.
31. 郑传祥, 李蓉, 王亮, 魏宗新, 刘远峰. 小型制冷压缩机吸气阀的流固耦合分析和优化研究. 工程设计学报, 2014, 21(1): 68-74.
32. 郑传祥, 魏宗新, 王亮, 李蓉, 魏双. 高压储氢容器失稳分析与研制. 化工机械, 2014, 41(005): 589-592.
33. 郑传祥, 李蓉, 王亮, 魏宗新. 碳纤维缠绕铝内衬储氢容器力学分析及优化控. 化工机械, 2013, 40(1): 51-55.
34. 沈海仁, 安刚, 郑传祥, 王亮. 复合材料高压储氢气瓶快速充放氢过程中的温度效应研究. 化工装备技术, 2012, (04): 22-25.




发明专利:郑传祥,王亮等.航天飞机机身碳纤维复合材料承压壳体液压疲劳试验系统.发明专利,ZL 2013, **.2.



浙江大学优秀博士毕业生, 2016.
国家奖学金, 2015.

浙江大学公派出国奖学金, 2014.

浙江大学优秀研究生,2013.







相关话题/船舶 上海交通大学