删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海硅酸盐所提出锂硫电池“三明治”结构催化-导电界面构筑

本站小编 Free考研考试/2022-02-14

锂硫电池(Li-S)相对于传统锂离子电池具有更高的理论能量密度(2500 Wh/kg),有望成为未来储能应用(包括大规模智能电网、电动汽车和移动电子设备等)最有前景的候选体系之一。近年来,人们提出了多种策略来尝试实现锂硫电池的商业化,如开发新型正极复合材料、中间层或隔膜装饰、多功能粘结剂和电解液添加剂等。其中,针对硫正极的微结构设计可以对硫基活性物质产生最直接的限域效应,极性宿主材料的引入可以更进一步地增强对锂多硫化物的化学吸附,从而提高电池循环稳定性。但是非碳极性宿主固有的低电子导电性通常导致低的硫利用率,尤其是在高负载下硫分布不均匀时这种劣势更为凸显,因此,探索更具导电性的极性宿主材料及其与碳骨架的充分接触方式十分必要。近期,中国科学院上海硅酸盐研究所李驰麟研究员与中国科学院宁波材料技术与工程研究所杨明辉研究员合作,设计出催化剂-碳-催化剂“三明治”结构的、具有紧凑型二维催化-导电界面的硫宿主材料,实现高稳定性的锂硫电池,相关成果发表在国际学术期刊Angewandte Chemie(2020,doi.org/10.1002/anie.202004048)上。
  金属氮化物的d-轨道相互重叠,其电子电导率与金属相当,并且在吸附锂多硫化物方面是理想的极性材料,具有促进电荷转移和潜在电催化的作用。然而,金属氮化物在碳骨架中的复合方式很有限,通常只是纳米颗粒氮化物与碳骨架的点-点或点-面接触,接触面积有限,以致电荷传输能力受限,因此将极性宿主颗粒(或位点)与碳骨架之间建立足够接触的连续界面(面-面接触)仍然是一个棘手的挑战。另外,空载和非极性体积空间通常在松散的硫宿主框架中占较高的比例,离散的催化剂纳米晶域和导电基底之间的点接触无法消减这类非催化活性空间的占比,这一现象会阻碍高载量锂硫电池的发展。合理的正极设计和微结构复合可以使空载和非极性体积空间最小化,有望促进紧凑型锂硫电池的发展。基于此,该团队提出了一种具有连续二维催化-导电界面的兼具催化和电子转移功能的MoN-C-MoN “三明治”宿主结构作为锂硫电池的硫正极宿主材料。这种三层结构沿厚度方向存在于单个纳米片颗粒中,促使了双面外层氮化物极性表面对S/Li2Sx的强保形吸附和高效转化,以及中间碳夹层的高通量电子转移。这些二维形貌的“三明治”结构单元可进一步自组装成有序的三维织构,进一步加强了导电网络和催化网络的互连。
  即使宿主骨架的比表面积低(97 m2/g),吸附/催化平面的最大程度的暴露使得MoN-C@S电极在高S负载(75.7 wt%)和1C(1C = 1672 mA/g)倍率下仍可稳定循环至少1000圈,且每圈容量衰减率仅为0.033%,即使在4C高倍率下比容量也可维持在515 mAh/g。将S含量增加到3.4 mg/cm2后,这种三层结构的紧致硫宿主仍然表现出良好的导电性,在500圈循环后其容量仍能保持在604 mAh/g。这种催化和导电功能之间的协同工作模式保证了S/Li2Sx的均匀沉积,避免了它们在高倍率和长时间循环后的电极厚化和失活(电极钝化)。该工作报道的螯合-氨化方法为C和MoN相的有序分离和面-面接触提供了保证,也为二维氮化物的制备提供了一种新的合成方法。
  以上研究工作得到了国家重点研发计划、国家自然科学基金等项目的资助和支持。
  
  附文章链接:
  https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202004048

催化剂-碳-催化剂“三明治”结构作为紧凑型二维硫宿主材料助力高稳定性锂硫电池
相关话题/材料 结构 电子 纳米 金属

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 上海硅酸盐所在水分解电催化剂结构设计与机理研究方面取得系列进展
    氢气是一种高效、清洁的燃料,电解水析氢是一种理想制氢方式。析氢反应(HER)和析氧反应(OER)动力学缓慢,需要较高的过电位驱动反应的正常进行,导致了较低的能量转换效率。因此,需要开发高活性、低成本催化剂以大幅降低其电能消耗,减少贵金属催化剂的使用,有效降低制氢成本。目前研究的方向主要集中在:构筑具 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所在柔性有机/无机热电复合材料研究中取得重要进展
    柔性热电能量转换技术可将环境或人体温差转化成电能实现电子设备的自供电,在可穿戴等领域具有广阔的应用前景。传统无机热电材料具有优异的热电性能,但不具备柔性功能;而有机热电材料虽具有良好的柔性和弯曲性能,但热电性能极低。有机/无机复合热电材料可综合无机材料的热电高性能和有机材料的良好弯曲性能,成为近年来 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所在锂氧气电池碳基复合正极载体材料研究中取得进展
    目前,包括多孔碳、纳米碳管和石墨烯等在内的碳材料是二次锂氧气电池研究中普遍使用的正极载体。碳材料的优势在于:质量轻,比表面积大,电子导电率高,有利于三相电极反应;资源丰富,来源简便,易于实现产业化应用等。但在非水系锂氧气电池研究领域,碳材料存在稳定性不足等问题。非水系锂氧气电池在放电过程中发生1电子 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所研制的多项关键材料成功应用于长征五号B火箭和新一代载人飞船试验船
    5月5日18时,为我国载人空间站工程研制的长征五号B运载火箭,搭载新一代载人飞船试验船和柔性充气式货物返回舱试验舱,在我国文昌航天发射场点火升空,首飞任务取得圆满成功。在此次航天任务中,中国科学院上海硅酸盐研究所承担了火箭用耐磨涂层、高温高稳定压电陶瓷材料的研制任务,承担了新飞船用高温隔热屏、钛合金 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所在材料类国际学术期刊Progress in Materials Science上发表综述文章
    石墨烯(graphene)是具有单原子层厚度的独特二维结构,因其优异的力学、热学、光学和电学性能,在诸多领域表现出潜在的应用价值。2010年的诺贝尔物理学奖颁给了英国物理学家盖姆和诺奥肖洛夫,以表彰他们对石墨烯研究的贡献,此后石墨烯的发展更是如雨后春笋,相关论文发表数量也逐年增加。以石墨烯为基本的构 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所在3D打印复杂结构仿生骨支架方面取得新进展
    大段骨缺损的修复是临床上的一大挑战,3D打印技术由于精度高、可个性化定制而广泛用于制备骨组织工程支架。人体骨组织具有复杂精密的多级结构,骨的外层为致密的皮质骨,内含相互连通的哈弗斯管和福尔克曼管并有血管和神经穿过,骨的内部为多孔网状的松质骨,内含骨髓间充质干细胞。传统的骨组织工程支架不具备骨的复杂仿 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所举办上海材料基因组工程研究院2019年学术年会暨学术委员会第五次会议
    12月30日,由中国科学院上海硅酸盐研究所承办,上海大学、上海交通大学、华东理工大学、复旦大学、上海材料研究所、上海同步辐射光源6家单位协办的上海材料基因组工程研究院2019年学术年会暨学术委员会第五次会议在上海硅酸盐所嘉定园区召开。中国工程院院士、上海硅酸盐所研究员江东亮,中国科学院院士、上海大学 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所参加第四届亚洲材料教育研讨会
    12月7-8日,由中国科学院大学主办的第四届亚洲材料教育研讨会(AMES2019)在深圳召开,旨在进一步推进“材料一流学科建设、一流大学建设”(双一流)。来自中国、英国、日本、新加坡、新西兰、法国等地,上海交通大学、武汉理工大学、上海大学、东华大学、南京大学、中国科学院大学和中国科学院相关研究所等单 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所举办第十二届高性能陶瓷和超微结构学术研讨会—“柔性电子材料与器件...
    11月28-29日,第十二届高性能陶瓷和超微结构学术研讨会-“柔性电子材料与器件”专题在中国科学院上海硅酸盐研究所召开。国家自然科学基金委信息学部处长潘庆出席会议并致辞,中科院前沿局技术科学处主管于汉超出席会议。上海硅酸盐所副所长吴成铁,高性能陶瓷和超微结构国家重点实验室主任陈立东研究员、副主任孙静 ...
    本站小编 Free考研考试 2022-02-14
  • 上海硅酸盐所参加中国工程院国际工程科技发展战略高端论坛——第三届材料基因工程...
    11月23-24日,中国工程院国际工程科技发展战略高端论坛——第三届材料基因工程高层论坛在昆明召开。该论坛由中国工程院、云南省人民政府、中国材料研究学会主办,云南省科学技术院、北京科技大学、中国工程院化工冶金与材料工程学部、工业和信息化部产业发展促进中心、云南省贵金属新材料控股集团有限公司联合承办, ...
    本站小编 Free考研考试 2022-02-14