删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Metal-organic frameworks cut energy consumption of petrochemicals_上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05


Ultrathin MOF membrane on commercial polymer support. Credit: K.V. Agrawal/EPFL

  In the chemical and the petrochemical industries, separating molecules in an energy-efficient way is one of the most important challenges. Overall, the separation processes account for around 40% of the energy consumed in the petrochemical industry, and reducing this can help addressing anthropogenic carbon emissions.
  One of the most important products in thepetrochemical industryis propylene, which is widely used in fibers, foams, plastics etc. Purifying propylene almost always requires separating it from propane. Currently this is done by cryogenic distillation, where the two gases are liquefied by being cooled to sub-zero temperatures. This gives the propylene-propane separation process a very large energy footprint.

  A solution is to use "metal-organic frameworks" (MOF's). These are porous, crystalline polymers made of metal nodes that are linked together by organic ligands. The pores in their molecular structure allow MOFs to capture molecules so efficiently that they are now prime candidates in carbon-capture research.

  In terms of separating molecules, MOF-based membranes are among the highest performers, and can carry out the propylene-propane separation at ambient temperature. One MOF called ZIF-8 (zeolitic imidazolium frameworks-8), allows propylene to diffuse through its pores 125 times more efficiently than propane at 30oC, offering high selectivity without the need for sub-zero temperatures.





Electrophoretic nuclei assembly for energy-efficient separation membrane. Credit: K.V. Agrawal/EPFL

  "The main challenge with this approach is to synthesize high-quality, ultrathin, MOF films on commercial porous substrates without complicated substrate modifications," says Professor Kumar Varoon Agrawal at EPFL. "Such high-quality films have fewer defects and are necessary for obtaining the highest possible separation selectivity." His lab at EPFL Sion has now developed a straightforward MOF crystallization approach called "electrophoretic nuclei assembly for crystallization of highly-intergrown thin-films" (ENACT).

  The ENACT method allows simple regulation of the heterogeneous nucleation on unmodified (as-obtained) porous and nonporous substrates. This in turn facilitates the synthesis of ultrathin, highly intergrown polycrystalline MOF films.

  The lab used the ENACT method to synthesize 500-nm-thick MOF membranes. When they tested them, the membranes yielded one of the best separation performances in propylene/propane separation recorded to date. The ultrathin film yielded largepropylenepermeance (flux normalized with pressure difference), which will help reduce the membrane area needed for industrial applications.

  The group concludes that the versatile, straightforward ENACT method can be extended to a wide-range of nanoporous crystals.

  Explore further:Researcher optimally isolates propylene for commercial use

  More information:Guangwei He et al. Electrophoretic Nuclei Assembly for Crystallization of High-Performance Membranes on Unmodified Supports,Advanced Functional Materials(2018).DOI: 10.1002/adfm.201707427  



  Journal reference:Advanced Functional Materials
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19